Nav: Home

Our brains may ripple before remembering

March 15, 2019

A sound, a smell, a word can all flood our minds with memories of past experiences. In a study of epilepsy patients, researchers at the National Institutes of Health found that split seconds before we recall these events tiny electrical waves, called ripples, may flow through key parts of our brains that help store our memories, setting the stage for successful retrieval.

"We showed for the first time that ripples may be the neural substrates through which the human brain successfully recalls memories," said Kareem Zaghloul, M.D., Ph.D., a neurosurgeon-researcher at the NIH's National Institute of Neurological Disorders and Stroke (NINDS) and senior author of the study published in Science. "These results help us understand how the brain processes the details of our past waking experiences or episodic memories."

The study was led by Alex P. Vaz, B.S., an M.D., Ph.D. student at Duke University, Durham, North Carolina, who was completing his dissertation work with Dr. Zaghloul. For years, Dr. Zaghloul's team has been using grids of surgically implanted electrodes to record the electrical brain activity of drug resistant epilepsy patients enrolled in a trial at the NIH's Clinical Center. The recordings have helped identify the source of a patient's epileptic seizures as well as provide an opportunity to study how the brain encodes memories.

As many labs have established, Dr. Zaghloul's team knew that our episodic memories are controlled by neurons in at least two different parts of the brain, but they did not know exactly how the cells worked together to retrieve memories. Based on a growing of body of evidence, they suspected that the short, high frequency electrical waves seen in ripples may somehow be involved. For instance, two earlier patient studies suggested that ripples may be important for solidifying memories during sleep.

Then, in 2017, one group observed ripples flowing simultaneously in the medial temporal lobe (MTL) and the neocortex of rat brains and that this activity appeared to play a role in learning. That's when Vaz got the idea to look for ripples within the reams of data Dr. Zaghloul's team had been collecting from patients.

By reanalyzing the data, the team also found ripple activity in key parts of the patients' brains. Specifically, they saw ripples occurring nearly simultaneously in the MTL and the association cortex, an area of the neocortex known to process our experiences. In other words, when they spotted ripples in one area, then there was a good chance they would find them in the other. In contrast, they saw no evidence of coordinated activity between the MTL and the cortical areas of the brain that control our movements and sensations, suggesting the simultaneous activity they observed may be related to episodic memory.

Next, they analyzed data recorded while the patients played memory games. For this, patients sat in front of a screen and were asked to learn pairs of words, such as "finger" and "needle." Later, their memories were tested by flashing a word on the screen and asking the patient to state its paired word. The team discovered that the simultaneous ripple activity often happened a few milliseconds before a patient would correctly remember a word pair. No coordination was seen when the patients answered incorrectly, nor did it occur when the patients were learning the pairs.

Finally, the team found that the ripple synchronization seen before correct memory recall often triggered electrical activity patterns like those seen in the association cortex during learning. Several studies have shown that when we retrieve memories the brain reactivates neural activity that happened when we first experienced an event. The team's findings suggested that the coordinated ripples between the MTL and the neocortex may be an important part of that process.

"Our results suggest that coordinated ripple activity may play a critical role in replaying the neural codes behind our memories," said Dr. Zaghloul.

Dr. Zaghloul's lab is currently exploring this phenomenon in greater detail and hopes to understand how the synchronized ripples may influence other neural signals and features that have also been linked to successful memory recall.
-end-
Article:

Vaz et al., Coupled Ripple Oscillation Between the Medial Temporal Lobe and Neocortex Retrieve Human Memory. Science, February 28, 2019 DOI: 10.1126/science.aau8956

These studies were supported by NINDS' Intramural Research Program and an NIH training grant (GM007171).

For more information:

http://www.ninds.nih.gov

neuroscience.nih.gov/ninds/Home.aspx

http://www.ninds.nih.gov/Disorders/All-Disorders/Epilepsy-Information-Page

clinicalcenter.nih.gov/

NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH/National Institute of Neurological Disorders and Stroke

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.