Mutant protein developed by Hebrew University scientists

March 16, 2005

A unique technique for neutralizing the action of the leptin protein in humans and animals - thereby providing a means for controlling and better understanding of leptin function, including its role in unwanted cell growth -- has been developed by researchers at the Hebrew University of Jerusalem.

Leptin was discovered ten years ago and has attracted attention first because of its involvement in control of appetite and later by its effect on growth, puberty, digestion and immunological processes. Leptin can also have negative consequences, such as, for example, enhancing the spread of tumorous growths.

In his laboratory at the Hebrew University's Faculty of Agricultural Food and Environmental Quality Sciences in Rehovot, Arieh Gertler, the Karl Bach Professor of Agricultural Biochemistry, along with his students, has developed a technique for genetically engineering mutations of the leptin protein. Prof. Gertler has been assisted in this work by graduate students Dana Gonen-Berger and Leonora Niv-Spector and research assistant Gili Benyehuda.

In experimental work carried out cooperatively with researchers at the Agronomic Research Institute of France and the University of Paris VI, the scientists have developed a model showing which amino acids in leptin are responsible for activating leptin receptors in living cells. By replacing these amino acids with others, they were able to create a leptin variant that could bind with cell receptors, but would be unable to activate them, thereby providing a unique, novel research tool. In this way, the mutated leptin, with the substituted amino acids, acts as an "antagonist," competing with the normal leptin for the "attention" of the cell receptors to which both leptins are attracted. The result is a "standoff" situation in which the normal leptin is neutralized.

Since leptin is involved in several cell functions, the development of this mutated "antagonistic leptin" could have significant consequences not only for better understanding of leptin action in animals but also on halting undesirable leptin effects in humans, such as undesired cell proliferation in cancer, or in controlling other pathological phenomena in which leptin is a factor.

Thus far, the researchers have succeeded in creating antagonists of human, sheep, rat and mouse leptins.

A company, Protein Laboratories Rehovot (PLR), that was formed by Prof. Gertler and the Hebrew University's Yissum Research Development Company 18 months ago, was given the license to produce and market the mutated leptin products. Further development is currently being pursued towards testing whether leptin antagonists are capable of anti-cancer activity. This work is being pursued in cooperation with Prof. Nira Ben-Jonathan of the University of Cincinnati in the U.S., with the assistance of Prof. Gertler's graduate student, Gila Ben Avraham.

Prof. Gertler has presented his work at a symposium of the Israeli Endocrinology Society and most recently at an international biotechnological conference in Miami, Fla., sponsored by the scientific journal Nature.
-end-


The Hebrew University of Jerusalem

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.