UC Davis researchers discover new link between C-reactive protein, and heart disease and stroke

March 16, 2005

(SACRAMENTO, Calif.) -- The cells that line the arteries are able to produce C-reactive protein, according to a study funded by the National Institutes of Health and published in the April issue of American Journal of Pathology.

C-reactive protein is a risk marker for heart disease and is known to be produced in the liver, but UC Davis School of Medicine researchers Ishwarlal Jialal and Sridevi Devaraj found that endothelial cells also produce C-reactive protein, a key finding that helps to explain how plaque formation is initiated. This is particularly important because endothelial cells are supposed to protect the arteries from C-reactive protein.

"This is an extremely important finding," says Jialal, professor of pathology and internal medicine and director of the Laboratory for Atherosclerosis and Metabolic Research at UC Davis Medical Center. "We have convincingly demonstrated in this paper that aortic and coronary artery endothelial cells produce and secrete C-reactive protein. We also showed within the artery, mature white cells, called macrophages, make chemical messengers, cytokines, which enhance the C-reactive protein secretion by endothelial cells at least 10-fold.

"This tells us that there is cross-talk in the active plaque where these cells act in concert to cause very high C-reactive protein levels in the atheroma, which is the accumulation of plaque on the innermost layer of the artery," Jialal said. "The C-reactive protein produced by endothelial cells can not only act on the endothelial cells, but also on macrophages and smooth muscle cells in the atheroma. This creates a vicious cycle, leading to plaque instability and rupture, and ultimately heart attacks and strokes."

Work at UC Davis and other institutions has shown that C-reactive protein induces endothelial cell dysfunction, thus promoting plaque formation. C-reactive protein causes endothelial cells to produce less nitric oxide and to increase the number of cell adhesion molecules. This, in turn, allows damaging leukocytes to enter the vessels. Devaraj and Jialal also showed that C-reactive protein induces endothelial cells to produce plasminogen activator inhibitor, or PAI-1, which promotes clot formation. In addition, recent studies suggest that plaque tissue also produces C-reactive protein.

Coronary heart disease is the nation's single leading cause of death. According to the American Heart Association, approximately 1.2 million Americans will have a coronary attack this year. Almost a half million of these people will die. About 7.1 million Americans have survived a heart attack. And another 6.4 million Americans have experienced chest pain or discomfort due to reduced blood supply to the heart.

The good news is that reducing the concentration of C-reactive protein with targeted drugs, such as statins, has been shown to reduce cardiovascular events. Treating other risk factors such as smoking, obesity, high blood pressure and high cholesterol are also shown to reduce the levels of C-reactive protein.

Senthil Kumar Venugopal, a postgraduate researcher in the Laboratory of Atherosclerosis and Metabolic Research participated in the study.
-end-
Copies of all news releases from UC Davis Health System are available on the Web at http://www.ucdmc.ucdavis.edu/newsroom.

University of California - Davis Health System

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.