Nav: Home

Capturing 'black gold' with light

March 16, 2016

New Monash University research published this week in the Royal Society of Chemistry journal Nanoscale has found a simple and effective way of capturing graphenes and the toxins and contaminants they attract from water by using light. The findings could have significant implications for large-scale water purification.

A small amount of a special light-sensitive soap was added to the water containing the graphenes and contaminants. The soap changes its molecular structure when light of a particular colour is shone onto it. This changes the way it interacts with carbon materials in the graphene and causes them to separate out (along with contaminants stuck to them), enabling easier extraction of the graphenes and contaminants. Shining a different coloured light re-disperses the graphenes for re-use.

Monash researcher Dr Rico Tabor explained the diverse technological opportunities offered by graphene owing to its unique structure and properties.

"Among its many potential uses, the prospect of using graphenes for the purpose of water purification is extremely promising. Because the structure is essentially two-dimensional and only an atom thick, graphene `sheets' have the highest surface area possible, meaning their capacity to mop up contaminants in water surpass that of any currently used materials or membranes," Dr Tabor said.

"However, this raises the problem of how to extract the graphenes and contaminants from water. Traditional approaches use high amounts of energy by centrifugation, or adding large amounts of polymer at high cost," Dr Tabor said.

Co-researcher Thomas McCoy explained the significance of these latest research findings and the benefits of using light to capture graphenes.

"Light is appealing as it is abundantly available, simple and low cost when compared to most separation methods. Our latest research findings could have significant implications for cost-effective, large-scale water treatment," Mr McCoy said.
-end-
Media enquiries: Claire Bowers, Senior Communications Advisor, Faculty of Science, mobile: 0438 971 837, email: claire.bowers@monash.edu or contact Monash University's communications team, +61 3 9903 4840, email: media@monash.edu.

Monash University

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".