Nav: Home

The carbon dioxide loop

March 16, 2017

The oceans are great at absorbing carbon dioxide (CO2) from the air, but when their deep waters are brought to the surface, the oceans themselves can be a source of this prevalent greenhouse gas.

Wind patterns together with the Earth's rotation drive deep ocean water -- and the CO2 it sequesters -- upward, replacing surface water moving offshore. A process known as upwelling, it occurs on the west coasts of continents. And it's part of a never-ending loop in which CO2 levels in the surface ocean rise and fall in a natural rhythm.

But when CO2 levels rise, ocean pH falls, causing ocean acidification. Seeking to explore how short-term periods of elevated CO2 from upwelling impact the bacteria in the water, UC Santa Barbara researchers found that the additional CO2 -- and corresponding drop in pH -- increased the respiration of these organisms. This means more resources are recycled rather than retained in the food web. The results appear in the journal PLOS ONE.

"Despite their microscopic size, these bacteria drive the major cycling of carbon in the ocean's surface," said lead author Anna K. James, a graduate student in UCSB's Interdepartmental Graduate Program in Marine Science. "I wanted to see how much dissolved organic carbon the bacteria were eating and what proportion they dedicated to biomass."

In addition to measuring the organisms' biomass, James calculated bacterial respiration. When these microbes respire, the organic carbon they consume is converted back to CO2, which -- as a gas -- has the potential to go back into the atmosphere or to once again dissolve in the surface ocean.

"The elevated bacterial respiration could limit the oceans' ability to store organic carbon by converting it back to CO2," James explained.

To measure the flow of carbon through bacteria, James conducted remineralization experiments -- seawater culture incubations that use filtered surface seawater. She collected natural bacterial communities from the surface ocean, added them to the filtered seawater and measured how much carbon the bacteria consumed. From that, James was able too calculate their biomass, abundance and respiration.

"It important to know what bacterial respiration is because it has a number of implications for the ocean carbon cycle," James said. "The first is the movement of organic carbon from the surface into the deep ocean either via physical mixing or sinking. The other is, if the organic carbon is contained in bacterial biomass, it can be consumed by other organisms that eat bacteria."

The upshot: Factors that affect the recycling rate of microbes alter the fate of organic matter in the ocean's water column. "It is really surprising to realize that tiny bacteria respond to the concentration of CO2 available and in turn influence the amount of carbon the ocean takes up," said co-author Uta Passow, a research oceanographer at UCSB's Marine Science Institute.

"Anna's work demonstrates an unexpected but important finding that shows marine bacteria can directly respond to rapid decreases in ocean pH," said co-author Craig Carlson, a professor in UCSB's Department of Ecology, Evolution and Marine Biology. "By increasing their recycling rate, bacteria convert some of the organic matter back to CO2, which has implications in food web and ocean biogeochemical processes."
-end-


University of California - Santa Barbara

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab