Nav: Home

Fat cells step in to help liver during fasting

March 16, 2017

DALLAS - March 16, 2017 - How do mammals keep two biologically crucial metabolites in balance during times when they are feeding, sleeping, and fasting? The answer may require rewriting some textbooks.

In a study published today in Science, UT Southwestern Medical Center researchers report that fat cells "have the liver's back," so to speak, to maintain tight regulation of glucose (blood sugar) and uridine, a metabolite the body uses in a range of fundamental processes such as building RNA molecules, properly making proteins, and storing glucose as energy reserves. Their study may have implications for several diseases, including diabetes, cancer, and neurological disorders.

Metabolites are substances produced by a metabolic process, such as glucose generated in the metabolism of complex sugars and starches, or amino acids used in the biosynthesis of proteins.

"Like glucose, every cell in the body needs uridine to stay alive. Glucose is needed for energy, particularly in the brain's neurons. Uridine is a basic building block for a lot of things inside the cell," said Dr. Philipp Scherer, senior author of the study and Director of UT Southwestern's Touchstone Center for Diabetes Research.

"Biology textbooks indicate that the liver produces uridine for the circulatory system," said Dr. Scherer, also Professor of Internal Medicine and Cell Biology. "But what we found is that the liver serves as the primary producer of this metabolite only in the fed state. In the fasted state, the body's fat cells take over the production of uridine."

Basically, this method of uridine production can be viewed as a division of labor. Researchers found that during fasting, the liver is busy producing glucose - and so fat cells take over the role of producing uridine for the bloodstream. These findings were replicated in human, mouse, and rat studies.

Although uridine has many roles, this study is the first to report that fat cells produce plasma uridine during fasting and that a fat cell-liver-uridine axis regulates the body's energy balance.

Study lead author Dr. Yingfeng Deng, Assistant Professor of Internal Medicine, found that blood uridine levels go up during fasting and down when feeding. During feeding, the liver reduces uridine levels by secreting uridine into bile, which is transferred to the gallbladder and then sent to the gut, where it helps in the absorption of nutrients.

"It turns out that having uridine in your gut helps you absorb glucose; therefore uridine helps in glucose regulation," Dr. Scherer said.

The uridine in the blood works through the hypothalamus in the brain to affect another tightly regulated system - body temperature, Dr. Scherer added. It appears that only uridine made by fat cells reduces body temperature, he said.

Among the study's other key findings:
  • Blood uridine levels are elevated during fasting and drop rapidly during feeding. Excess uridine is released through the bile.
  • The liver is the predominant uridine biosynthesis organ, contributing to blood uridine levels in the fed state.
  • The fat cells dominate uridine biosynthesis and blood levels in the fasted state.
  • The fasting-induced rise in uridine is linked to a drop in core body temperature driven by a reduction in the metabolic rate.
In dietary studies, the researchers found that prolonged exposure to a high-fat diet blunted the effects of fasting on lowering body temperature, an effect also associated with obesity. Further testing indicated those findings were due to the reduced elevation in uridine in response to fasting, said Dr. Deng, also a member of the Touchstone Diabetes Center.

Future research questions include studying the effects of feeding-induced reductions in uridine levels in organs that rely heavily on uridine from plasma, such as the heart, and whether bariatric surgery affects blood uridine levels.

"Our studies reveal a direct link between temperature regulation and metabolism, indicating that a uridine-centered model of energy balance may pave the way for future studies on uridine balance and how this process is dysregulated in the diabetic state," Dr. Scherer said.
-end-
UT Southwestern co-authors from the Touchstone Diabetes Center include: Dr. Ruth Gordillo, Assistant Professor of Internal Medicine; Dr. Yu An, postdoctoral fellow; and Dr. Chen Zhang, research associate. Other collaborators were Dr. Zhao Wang, Assistant Professor of Internal Medicine; Dr. Qiren Liang, research scientist; Dr. Kelly Cautivo, former postdoctoral fellow; Dr. Jef De Brabander, Professor of Biochemistry and in the Harold C. Simmons Comprehensive Cancer Center; Dr. Joel Elmquist, Chief of the Division of Hypothalamic Research; Dr. Jay Horton, Director of the Center for Human Nutrition; and Dr. Joseph Hill, Chief of the Division of Cardiology.

Dr. Scherer holds the Gifford O. Touchstone, Jr. and Randolph G. Touchstone Distinguished Chair in Diabetes Research; Dr. De Brabander holds the Julie and Louis Beecherl Jr. Chair in Medical Science; Dr. Elmquist holds the Carl H. Westcott Distinguished Chair in Medical Research, and the Maclin Family Distinguished Professorship in Medical Science, in Honor of Dr. Roy A. Brinkley; Dr. Horton holds the Distinguished Chair in Human Nutrition, The Dr. Robert C. and Veronica Atkins Chair in Obesity & Diabetes Research, the Scott Grundy Director's Chair, and the Center for Human Nutrition Director's Endowed Chair; and Dr. Hill holds the James T. Willerson, M.D., Distinguished Chair in Cardiovascular Diseases, and the Frank M. Ryburn, Jr. Chair in Heart Research.

Researchers from Washington University School of Medicine in St. Louis also participated.

The study received support from the American Diabetes Association, the American Heart Association, the National Institutes of Health, and The Welch Foundation.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.
-end-
This news release is available on our website at http://www.utsouthwestern.edu/newsroom.

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews

UT Southwestern Medical Center

Related Glucose Articles:

Injectable solution may provide weeks of glucose control
Biomedical engineers at Duke University have created a biopolymer that can provide weeks of glucose control with a single injection.
Sugar sponges sop up and release glucose as needed
Many diabetes patients must inject themselves with insulin, sometimes several times a day, while others take medications orally to control blood sugar.
Not such a 'simple' sugar -- glucose may help fight cancer and inflammatory disease
Scientists have just discovered that glucose, the most important fuel used in our bodies, also plays a vital role in the immune response.
Convenient and easy to use glucose monitoring and maintenance
A research group from the Center for Nanoparticle Research within the Institute for Basic Science has developed a convenient and accurate sweat-based glucose monitoring and maintenance device.
How rare sugars might help control blood glucose
In an era when the label 'natural' hits a sweet spot with consumers, some uncommon sugars emerging on the market could live up to the connotation.
Neuronal stimulation regulates appetite and glucose levels in mice
This week in the JCI, a study led by Michael Scott at the University of Virginia explores how stimulation of a subset of neurons that produce glucagon-like peptides can control appetite and glucose levels in lean and obese mice.
Renoprotective effects of sglt2 inhibitors: Beyond glucose reabsorption inhibition
In this manuscript we summarize the available data on the mechanisms that underlie the renoprotective properties of SGLT2 inhibitors.
Mouse models indicate burning more fat and less glucose could lead to diabetes
Making muscles burn more fat and less glucose can increase exercise endurance, but could simultaneously cause diabetes, says a team of scientists from Baylor College of Medicine and other institutions.
Immune system uses gut bacteria to control glucose metabolism
Researchers have discovered an important link between the immune system, gut bacteria and glucose metabolism -- a 'cross-talk' and interaction that can lead to type 2 diabetes and metabolic syndrome when not functioning correctly.
Researchers discover new regulator in glucose metabolism
A key genetic switch in the liver regulates glucose metabolism and insulin action in other organs of the body.

Related Glucose Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...