Technology to screen for higher-yielding crop traits is now more accessible to scientists

March 16, 2020

Like many industries, big data is driving innovations in agriculture. Scientists seek to analyze thousands of plants to pinpoint genetic tweaks that can boost crop production--historically, a Herculean task. To drive progress toward higher-yielding crops, a team from the University of Illinois is revolutionizing the ability to screen plants for key traits across an entire field. In two recent studies--published in the Journal of Experimental Botany (JExBot) and Plant, Cell & Environment (PC&E)--they are making this technology more accessible.

"For plant scientists, this is a major step forward," said co-first author Katherine Meacham-Hensold, a postdoctoral researcher at Illinois who led the physiological work on both studies. "Now we can quickly screen thousands of plants to identify the most promising plants to investigate further using another method that provides more in-depth information but requires more time. Sometimes knowing where to look is the biggest challenge, and this research helps address that."

This work is supported by Realizing Increased Photosynthetic Efficiency (RIPE), an international research project that is creating more productive food crops by improving photosynthesis, the natural process all plants use to convert sunlight into energy and yields. RIPE is sponsored by the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research (FFAR), and the U.K. Government's Department for International Development (DFID).

The team analyzed data collected with specialized hyperspectral cameras that capture part of the light spectrum (much of which is invisible to the human eye) that is reflected off the surface of plants. Using hyperspectral analysis, scientists can tease out meaningful information from these bands of reflected light to estimate traits related to photosynthesis.

"Hyperspectral cameras are expensive and their data is not accessible to scientists who lack a deep understanding of computational analysis," said Carl Bernacchi, a research plant physiologist with the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) at the Carl R. Woese Institute for Genomic Biology. "Through these studies, our team has taken a technology that was out of reach and made it more available to our research community so that we can unearth traits needed to provide farmers all over the world with higher-yielding crops."

The RIPE project analyzes hundreds of plants each field season. The traditional method used to measure photosynthesis requires as much as 30 minutes per leaf. While newer technologies have increased efficiency to as little as 15 seconds per plant, the study published in JExBot has increased efficiency by an order of magnitude, allowing researchers to capture the photosynthetic capacity of hundreds to thousands of plants in a research plot.

In the JExBot study, the team reviewed data from two hyperspectral cameras; one that captures spectra from 400-900 nanometers and another that captures 900-1800 nanometers. "Our previous work suggested that we should use both cameras to estimate photosynthetic capacity; however, this study suggests that only one camera that captures 400-900 is required," said co-first author Peng Fu, a RIPE postdoctoral researcher who led the computational work on both studies.

In the PC&E study, the team resolved to make hyperspectral information even more meaningful and accessible to plant scientists. Using just 240 bands of reflectance spectra and a radiative transfer model, the team teased out how to identify seven important leaf traits from the hyperspectral data that are related to photosynthesis and of interest to many plant scientists.

"Our results suggest we do not always need 'high-resolution' reflectance data to estimate photosynthetic capacity," Fu said. "We only need around 10 hyperspectral bands--as opposed to several hundred or even a thousand hyperspectral bands--if the data are carefully selected. This conclusion can help pave the way to make meaningful measurements with less expensive cameras."

These studies will help us map photosynthesis across different scales from the leaf level to the field level to identify plants with promising traits for further study.

The RIPE project and its sponsors are committed to ensuring Global Access and making the project's technologies available to the farmers who need them the most.
Realizing Increased Photosynthetic Efficiency (RIPE) aims to improve photosynthesis to equip farmers worldwide with higher-yielding crops to ensure everyone has enough food to lead a healthy, productive life. This international research project is sponsored by the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research, and the U.K. Government's Department for International Development.

RIPE is led by the University of Illinois in partnership with The Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, Lancaster University, Louisiana State University, University of California, Berkeley, University of Cambridge, University of Essex, and U.S. Department of Agriculture, Agricultural Research Service.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to