Two hormones drive anemonefish fathering, aggression

March 16, 2020

CHAMPAIGN, Ill. -- Two brain-signaling molecules control how anemonefish dads care for their young and respond to nest intruders, researchers report in a new study. Because there are many similarities in brain structure between fish and humans, the findings offer insight into the fundamental nature of parental care, the scientists say.

"One of the benefits of studying fish is that their behaviors are simpler," said Ross DeAngelis, a former graduate student who conducted the work in the laboratory of Justin Rhodes, a professor of psychology at the University of Illinois at Urbana-Champaign. "By exploring these systems, we can understand the broader implications on vertebrate behavior."

Anemonefish live in pairs on sea anemones in the wild. Female anemonefish are more aggressive than their mates and help protect the nest from intruders. Fathers have a more nurturing role. See video.

"Male anemonefish are spectacular fathers," said Rhodes, who led the research. "They nourish the eggs by fanning them to provide oxygen and clear debris, and they nip at the eggs to clean them. When a predator is around, they switch their behavior to become aggressive - they try to bite and fight the predators away."

Previous research focused on only one facet of parental care: either nourishment or defense. The new study aims to understand both aspects together in the presence of intruders.

Two hormones play a role in guiding the trade-off between caring for one's offspring and defending them. Arginine vasotocin increases aggression, while isotocin boosts egg care. Their effects on parental behavior in the presence of intruders was previously unknown.

The researchers used inhibitory compounds, known as antagonists, to block the binding of arginine vasotocin or isotocin to their receptors in the brain. They injected these compounds into the abdomens of the fish. From there, the antagonists were carried to the brain through the blood.

"Blocking arginine vasotocin reduced aggression and increased parental care in male anemonefish," DeAngelis said. "This is an unusual result because they are such good dads - we didn't think it was possible for them to be even better."

Blocking isotocin had the opposite effect. It increased aggression, and the fish spent less time nipping and fanning their eggs, DeAngelis said.

"The results are similar to what we see in humans," Rhodes said. "Oxytocin, which is the human version of isotocin, is known to be important for nurturing. Arginine vasopressin, which is the human version of arginine vasotocin, plays a role in social and affiliative behavior in the slightly different context of mating."

The two hormones have very similar structures and bind to similar receptors in the brain, so the researchers cannot be certain that the antagonist for one isn't also affecting the other. They also have not yet determined how the hormones specifically modify brain-signaling.

"Individuals across the animal kingdom have to make decisions on how to maximize their fitness, and most of those decisions are based on environmental context," DeAngelis said. "It is interesting to see that the neurochemical pathways can be modulated by the current social context."
-end-
Rhodes is an affiliate of the Beckman Institute for Advanced Science and Technology at the U. of I. The researchers reported their findings in the journal Hormones and Behavior.

Editor's notes:

To reach Justin Rhodes, email jrhodes@illinois.edu.

The paper "Nonapeptides mediate trade-offs in parental care strategy" is available online and from the U. of I. News Bureau. [LINK to email

DOI: https://doi.org/10.1016/j.yhbeh.2020.104717

University of Illinois at Urbana-Champaign, News Bureau

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.