Nav: Home

Cancer diagnostics

March 16, 2020

A good indicator of dysregulation in live cells is a change in their RNA expression. MicroRNA (miRNA), a special type of RNA, is considered a biomarker for carcinogenic cells. A team of scientists from China has found a way to amplify miRNA in live tumor cells for bioimaging. As they report in the journal Angewandte Chemie, their assay is based on a robust cellular autocatalytic biocircuit triggered by synthetic DNA and nanoparticles.

Diagnosing cancer before a tumor becomes visible has been one of the long-standing goals in medicine. One of the biomarkers for carcinogenicity in a cell is its RNA expression pattern or, more precisely, the change in RNA expression, which causes metabolic degeneration. There are many types of RNA, among which a short noncoding RNA called miRNA promotes or impedes the translation of nucleus-encoded genetic information into protein. Accordingly, the detection of a changed miRNA expression profile is thought to be a reliable indication of the degeneration of a cell.

However, the detection of a particular miRNA is difficult because it is present in the cell only in tiny amounts and must by amplified and connected to a signaling entity, such as a fluorescence dye, for visualization. A team of scientists at Wuhan University, China, led by Fuan Wang, have discovered a suitable amplification-detection mechanism for miRNA, which relies on an autocatalytic biocircuit activated by synthetic DNA, leading to a strong fluorescence signal that flags tumor cells.

RNA is usually synthesized in the nucleus of the cell and transported to the cytoplasm where it conveys genetic information. However, when synthetic DNA is present in the cytoplasm, RNA can bind to a matching nucleotide sequence of the DNA strand; a fact that is exploited in, for example, antiretroviral treatment to silence viral RNA expression. Wang and his coworkers did the opposite. By matching synthetic DNA strands with miRNA, they triggered an autocatalytic amplification circuit--called autocatalytic DNAzyme biocircuit--to form DNA-miRNA assemblies. These assemblies grew further to form DNAzyme nanowires that carry the fluorescence dyes.

After administering the DNAzyme detection kit, the authors observed bright fluorescence in a mouse model at the location where a tumor was developing.

To make the DNAzyme enter the tumor cells, the authors used nanoparticles--tiny parcels that can deliver drugs and other molecular freight to the cells--made of manganese dioxide with a honeycomb-like structure. According to the authors, this composition and architecture has the advantage that the nanoparticle can be readily activated by glutathione, which is a chemical found in abundance in tumor cells. Another advantage is that the released manganese ions would sustain the autocatalytic DNAzyme biocircuit, the authors write.

The scientists emphasize that their self-enhanced bioimaging system could be developed as a powerful tool to visualize tumor cells with biomarkers. This is especially promising as many different miRNAs can be selectively targeted to investigate different cancers or other cell dysfunction.
-end-
About the Author

Dr. Fuan Wang is a Professor of chemistry at the Key Laboratory of Analytical Chemistry for Biology and Medicine at Wuhan University, China. His group is devoted to the investigation of synthetic DNA nanostructures for diagnostic, imaging, and medicinal applications.

https://www.chemistry.nus.edu.sg/people/academic_staff/yaosq.htm

Wiley

Related Tumor Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Blocking sugar structures on viruses and tumor cells
During a viral infection, viruses enter the body and multiply in its cells.
Tumor of the touch cells: A first-of-its-kind study in India
A team of researchers from the National Centre for Biological Sciences, Bangalore, a pathologist at the Tata Memorial Centre, Mumbai and scientists at ACTREC, Navi Mumbai, joined hands to study the basis of a skin cancer known as Merkel cell carcinoma (MCC).
Achilles heel of tumor cells
In almost all cases of colon cancer, a specific gene is mutated -- this offers opportunities to develop broadly effective therapeutic approaches.
Engineered T cells may be harnessed to kill solid tumor cells
A new Tel Aviv University study finds that a form of immunotherapy used to treat the blood cancer leukemia may be effective in treating other kinds of cancer as well.
Neurons promote growth of brain tumor cells
In a current paper published in the journal 'Nature', Heidelberg-based researchers and physicians describe how neurons in the brain establish contact with aggressive glioblastomas and thus promote tumor growth / New tumor activation mechanism provides starting points for clinical trials.
Scientists develop technology to capture tumor cells
Instead of searching for a needle in a haystack, what if you were able to sweep the entire haystack to one side, leaving only the needle behind?
Tumor cells' drug addiction may be their downfall
Work by researchers at the Babraham Institute in partnership with the global biopharmaceutical company AstraZeneca shows how cancer cells' acquired resistance to anti-cancer drugs proves fatal once the treatment compound is withdrawn.
The fluid that feeds tumor cells
MIT biologists have found that the nutrient composition of the interstitial fluid that normally surrounds pancreatic tumors is different from that of the culture medium normally used to grow cancer cells.
A bad influence: the interplay between tumor cells and immune cells
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ultimately affect response to treatment.
More Tumor Cells News and Tumor Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.