Nav: Home

Elucidation of mechanisms that coordinate cell memory inheritance with DNA replication

March 16, 2020

Why normal cells turn into cancer cells One of the factors is deeply related to the failure of the cell differentiation mechanism called DNA methylation (*1). The joint research groups of The Institute of Medical Science, the University of Tokyo, Yokohama City University, and Center for Integrated Protein Science Munich (CIPSM) have clarified new mechanism for controlling DNA methylation in cells.

Ubiquitination (*2) of a protein called PAF15 (*3) is an important factor for the inheritance of DNA methylation, according to the new research. The group also successfully demonstrated a molecular mechanism by which PAF15 is ubiquitinated. In this way, the group revealed the mechanism underlying how cellular memory is inherited when cells proliferate.

The research was published in Nature Communications (online version, March 6, 2020). The results are expected to greatly contribute to applications in this field, such as the development of new inhibitors of DNA methyltransferase that specifically target cancer cells.

The primary mechanism of this DNA methylation has not been fully elucidated

There are two factors that transform normal cells into cancer cells. One is a genetic mutation that alters the DNA sequence, and the other is an epigenetic mutation (*4) that changes how genes are used. An epigenetic mutation is defined as an aberrant pattern of "DNA methylation" and "histone modification" (*5). When cells proliferate, both genetic and epigenetic mutations are transmitted to new cells.

The research team decided to investigate the mechanism of faithful "DNA methylation inheritance" which is critical for cancer suppression and has not been sufficiently investigated. As one of the lead researchers, associate professor Atsuya Nishiyama of the University of Tokyo, explains as follows:

"Every cell has the same genetic information. Each cell has very different characteristics. It is DNA methylation that determines the characteristics of each cell. Until now, the correlation between the failure of the mechanism of DNA methylation and cancer of cells was known, but how DNA methylation controls disease was not. That's why we conducted research to understand the basic mechanisms of DNA methylation. "

PAF15 is a factor guaranteeing the maintenance of DNA methylation

The research group conducted experiments using a cell-free system derived from Xenopus laevis eggs to analyze the DNMT1 protein complex. Their work resulted in the new discovery of PAF15 as a factor that specifically binds to DNMT1(*6).

Further analysis revealed that PAF15 binds to chromosomes via PCNA (*7) during DNA replication, The research group also showed that two lysine residues of PAF15 undergo monoubiquitination by UHRF1 (*8) to facilitate DNMT1 chromatin localization. These results indicate that PAF15 is an important regulator of DNMT1.

During unperturbed S-phase, most of the DNMT1 on the chromosome was bound to ubiquitinated PAF15. Elevated histone H3 ubiquitination levels and the interaction between DNMT1 and ubiquitinated H3 were observed in conjunction with the inhibition of PAF15 function.

This finding suggests that PAF15 ubiquitination is the primary pathway controlling DNMT1 localization to DNA methylation sites, and that histone H3 ubiquitination may serve as a backup system. The team also introduced mutations to amino acids at the ubiquitination site of PAF15 in mouse ES cells, and found that the level of DNA methylation in the whole genome was greatly reduced, thus making it clear that PAF15 was a factor guaranteeing the maintenance of DNA methylation.

(Please see the research group's paper for details: https://www.nature.com/articles/s41467-020-15006-4)

Potential to greatly contribute to the development of DNA methylase inhibitors

DNA methylase is also attracting attention as a material for anticancer drugs. The results of this study have shown not only the scientific significance of clarifying the new mechanism of DNA methylation inheritance, but also the potential to greatly contribute to the development of DNA methyltransferase inhibitors.

In addition, it has been reported that PAF15 is over-expressed in various cancer cells. It will be important to clarify the effect of PAF15 on DNA methylation control in the future.
-end-
Research Notes

(*1) DNA methylation: an epigenetic modification that occurs by the addition of a methyl (CH3) group to DNA, affecting gene expression and chromatin structure.

(*2) ubiquitination: the reaction that covalently conjugates a small polypeptide, ubiquitin, to a particular residue of a target protein. Ubiquitination affects protein stability, cellular localization, enzymatic activity, and protein-protein interactions.

(*3) PAF15: PCNA-associated factor 15 was identified as a proliferating nuclear antigen interacting protein.

(*4) epigenetic mutation: defined as aberrant DNA methylation and histone modifications.

(*5) histone modification: Covalent post-translational modification to histone proteins, which includes methylation, acetylation, and ubiquitination. These modifications cooperate with DNA methylation to impact gene expression and chromatin structure.

(*6) DNMT1: DNA methyltransferase 1 (DNMT1) is an enzyme that catalyzes the transfer of methyl groups to cytosine. DNMT1 is responsible for maintenance DNA methylation which ensures the inheritance of DNA methylation in proliferating cells.

(*7) PCNA: Proliferating cell nuclear antigen (PCNA) is a critical regulator of DNA replication, which regulates DNA polymerase processivity.

(*8) UHRF1: Ubiquitin-like, PHD and RING finger containing 1 plays a critical role in the maintenance of DNA methylation. UHRF1 specifically binds to hemi-methylated DNA during S-phase and recruits DNMT1 to sites of DNA methylation.

About the research

1) Journal Article


Atsuya Nishiyama, Christopher B. Mulholland, Sebastian Bultmann, Satomi Kori, Akinori Endo, Yasushi Saeki, Weihua Qin, Carina Trummer, Yoshie Chiba, Haruka Yokoyama, Soichiro Kumamoto, Toru Kawakami, Hironobu Hojo, Genta Nagae, Hiroyuki Aburatani, Keiji Tanaka, Kyohei Arita, Heinrich Leonhardt and Makoto Nakanishi(corresponding author)2020"Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation"Nature communications.

DOI: 10.1038/s41467-020-15006-4

Article URL: https://www.nature.com/articles/s41467-020-15006-4

2) Publication Journal

Nature communications

https://www.nature.com/ncomms/

3 Related Links

http://www.ims.u-tokyo.ac.jp/imsut/en/

The Institute of Medical Science, The University of Tokyo

https://www-user.yokohama-cu.ac.jp/~english/

Yokohama City University

https://www.en.uni-muenchen.de/index.html

Center for Integrated Protein Science Munich (CIPSM)

The Institute of Medical Science, The University of Tokyo

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.