Munich Laser Emits A Beam Of Matter Waves

March 16, 1999

German scientists at the Max Planck Institute for Quantum Optics in Garching and the University of Munich have developed a laser that emits a continuous heam of matter waves instead of light (to be reported in Physical Review Letters).

Such unprecedented control over atomic motion becomes possible by the laws of quantum mechanics at very low temperatures, close to absolute zero, where the atoms reveal their wave nature.

Atom lasers open new prospects in many areas of science and technology. For instance, it should become possible to accurately deposit atoms on surfaces and thus to produce tiny nanostructures, as needed in future computer circuits. Atom lasers may also lead to extremely precise atomic clocks for future navigation and communication systems.

In their experiments, Tilman Esslinger, Immanuel Bloch and Theodor W. Hänsch have taken pictures of the shadow cast by their atom laser beam. The pencil-like beam contains about half a million rubidium atoms and is accelerated downwards by gravity.

Just as a beam of light, an atom laser beam can be focused and reflected by using lenses or mirrors consisting of laser light (or of magnets). It appears feasible to focus an atom laser beam to a spot size of one nanometer, which is a thousand times smaller than the smallest focus of a laser beam.

The atom laser is based on Bose- Einstein condensation. If a gas is cooled to a few millionth of a degree above absolute zero, the atoms lose their identity and behave as a single entity, some kind of "super atom". Such a Bose-Einstein condensate was first produced by American scientists in 1995.

In the Munich experiment, a dilute gas of rubidium atoms is captured in a sophisticated low-power magnetic trap and cooled down to reach Bose-Einstein condensation. With the help of a radiofrequency field the scientists flip the atomic spin so that atoms are allowed escape from the magnetic trap. In vacuum, the atoms are accelerated by gravity and form a parallel beam of coherent matter waves.

It the radiofrequency field is turned on before condensation sets in, the atom laser can only reach threshold, if there is laser "gain". Unlike a Bose-Einstein condensate, such a laser relies on matter wave amplification by stimulated elastic scattering of rubidium atoms just as an optical laser relies on light amplification by stimulated emission of radiation.

Two years ago, a group at MIT demonstrated the first pulsed atom laser. The Munich group is the first to produce a continuous matter wave beam which can be maintained for a tenth of a second. The wave packet of each atom extends over the entire length of this beam, so that a quantum object of truly macroscopic dimensions is created. The high brightness and coherence of such a matter wave beam opens exciting perspectives for the young fields of atom optics and atom interferometry.
-end-


Max-Planck-Gesellschaft

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.