Engineer devises ways to improve gas mileage

March 17, 2009

Last summer, it was very expensive to fill up a gas tank when the gasoline price hit close to four dollars a gallon. Transportation by road or air consumes fuel, which not only increases our vulnerability to foreign imports but also is a source of greenhouse gas emissions that will impact adverse change in climate and global warming. A mechanical engineer at Washington University in St. Louis is developing techniques that will lessen our monetary pain at the pump by reducing the drag of vehicles. Drag is an aerodynamic force that is the result of resistance a body encounters when it moves in a liquid or gaseous medium (such as air). Reduction in drag means less fuel would be required to overcome the fluid resistance encountered by the moving vehicle.

Working with undergraduate and graduate students, Ramesh K. Agarwal, Ph.D, the William Palm Professor of Engineering at Washington University in St. Louis, has successfully demonstrated that the drag of airplane wings and cars/trucks can be reduced by employing the active flow control (AFC) technology. The idea behind the AFC is to deploy actuators on the surface of these vehicles to modify the flow in a way that the overall resistance is reduced. Using computational fluid dynamics software, Agarwal has found that the actuators modify the flow, which results in drag reduction, which in turn reduces the fuel amount needed.

"The most promising actuators are the so called synthetic jet or oscillatory jet actuators which are embedded in the surface of the body (an airplane wing for example), and essentially perform injection and suction of the fluid from the surface in a periodic manner," said Agarwal. He has demonstrated that the transonic drag of an airplane wing can be reduced by 12 to 15 percent with the incorporation of three-ounce actuators, about 20 to 30 spaced optimally on the surface of the wing.

"We use the genetic algorithms and artificial neural net algorithms to optimize the placement of actuators." Agarwal said. His students have recently applied the concept on cars and trucks and have achieved 15 to 18 percent reduction in drag by placing the actuators on the back surface of these vehicles. Although the technology has not yet been deployed on any commercially available vehicle, it is being researched and investigated by airplane and automobile companies worldwide.

"There are approximately 100 million cars and trucks on the road in the United States alone and hundreds of millions more worldwide. Similarly there will be a substantial increase in air transportation worldwide. The AFC technology can therefore play an important role in fuel conservation and reduction of greenhouse gas emissions," said Agarwal, one of the most decorated engineers in the United States and a fellow of ten national science and engineering societies including the American Association for Advancement of Science, American Physical Society, American Society of Mechanical Engineers (ASME), American Institute of Aeronautics and Astronautics (AIAA) and the Institute of Electrical and Electronics Engineers.

Agarwal will receive the James B. Eads Award from the Academy of Science of St. Louis on April 30, 2009. It is the latest of several distinguished awards he has received in just the past three years. An internationally renowned scholar who is considered a leading authority in aerodynamics and computational fluid dynamics, he has been the recipient of almost all the major national and international awards in these fields.

In 2007, he received the Gold Award from the Royal Aeronautical Society of U.K., an award given to fewer than five Americans in more than fifty years. In 2008, he received the "Aerodynamics Award" for outstanding contributions to Aerodynamics; it is the highest national award given by the AIAA in Aerodynamics. In 2008, he was also the recipient of William Littlewood Award given jointly by AIAA and SAE (Society of Automotive Engineers). Established in 1971, the award has only been given twice to a member of academia including Agarwal. It is normally given to CEOs and senior executives of aerospace companies worldwide. He received the "Fluids Engineering Award" in 2001 from ASME, the highest national technical award given by ASME in fluid dynamics.

Agarwal is also working for the United States Air Force on development of techniques to predict heat transfer and to design improved thermal protection systems for the next generation of space access vehicles.
-end-


Washington University in St. Louis

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.