Joint fluid harbors bacterial clumps after replacement despite pre-surgery antibiotics

March 17, 2015

PHILADELPHIA, PA - March 17, 2015- Researchers at Thomas Jefferson University and the National Institutes of Health are building on their research which seeks to understand why joint infections persist despite standards of care designed to stop them. More Americans than ever will receive joint replacements, and with an infection rate of approximately 1 percent, the potential exists for tens of thousands to experience post-operative infection and complications each year.

"In this study, we decided to find out if pre-operative, prophylactic antibiotic concentrations in joint fluid samples from patients were sufficient to prevent Staphylococcus aureus and MRSA contamination," said Noreen Hickok, Ph.D., Associate Professor in the Department of Orthopedic Surgery in the Sidney Kimmel Medical College at Thomas Jefferson University. "We found that high concentrations of the preferred antibiotic cefazolin are present in the synovial fluid. But when bacteria are introduced into this environment, the bacteria survive and continue to grow and form clumps."

Importantly, when Staphylococcus aureus was introduced into joint fluid, the bacteria was still able to colonize model implant surfaces, i.e. titanium pins, and form biofilms. The persistence of these bacteria in synovial fluid containing antibiotics may be one reason that joint infection is so difficult to cure.

The team's previous research identified these floating biofilm-like clumps of bacteria as a source of antibiotic-resistant joint infections. These biofilm-like clumps arise because bacteria embed themselves in a protective mesh of proteins that resist the penetration of antibiotics. They also found that the bacteria slow their growth, making them even less susceptible to antibiotics, which are designed to target rapidly growing cells like bacteria.

"The next step is to see how we can disperse these mega-clusters of buried bacteria. If we can provide a window for antibiotics to carry out their intended function, we can move towards a clinical model and ultimately cure joint infection," offered Sana Dastgheyb, Ph.D., lead author on this study and researcher at both Thomas Jefferson University and the National Institutes of Health.
-end-
Article Reference: S.S. Dastgheyb, et al., "Staphylococcal Persistence Due to Biofilm Formation in Synovial Fluid Containing Prophylactic Cefazolin," Antimicrob. Agents Chemother, doi:10.1128/AAC.04579-14, 2015.

Acknowledgements: The authors thank Dr. Alexander Horswill for generously supplying the fluorescent S. aureus strain, AH1710. This study was supported by NIH grants HD06153 and DE019901 to N.J.H, as well as the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH) (ZIA AI000904-13, to M.O.), and a T32 NIH training grant (T32-AR-052273, to I.M.S.). The content is solely the responsibility of the authors and does not necessarily represent the views of the National Institutes of Health.

Conflicts: The authors declare no conflicts associated with this work.

About Jefferson -- Health is all we do.

Thomas Jefferson University, Thomas Jefferson University Hospitals and Jefferson University Physicians are partners in providing the highest-quality, compassionate clinical care for patients, educating the health professionals of tomorrow, and discovering new treatments and therapies that will define the future of healthcare. Thomas Jefferson University enrolls more than 3,600 future physicians, scientists and healthcare professionals in the Sidney Kimmel Medical College (SKMC); Jefferson Schools of Health Professions, Nursing, Pharmacy, Population Health; and the Graduate School of Biomedical Sciences, and is home of the National Cancer Institute (NCI)-designated Sidney Kimmel Cancer Center. Jefferson University Physicians is a multi-specialty physician practice consisting of over 650 SKMC full-time faculty. Thomas Jefferson University Hospitals is the largest freestanding academic medical center in Philadelphia. Services are provided at five locations -- Thomas Jefferson University Hospital and Jefferson Hospital for Neuroscience in Center City Philadelphia; Methodist Hospital in South Philadelphia; Jefferson at the Navy Yard; and Jefferson at Voorhees in South Jersey.

Thomas Jefferson University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.