Nav: Home

A new glimpse into working memory

March 17, 2016

CAMBRIDGE, MA -- When you hold in mind a sentence you have just read or a phone number you're about to dial, you're engaging a critical brain system known as working memory.

For the past several decades, neuroscientists have believed that as information is held in working memory, brain cells associated with that information fire continuously. However, a new study from MIT has upended that theory, instead finding that as information is held in working memory, neurons fire in sporadic, coordinated bursts.

These cyclical bursts could help the brain to hold multiple items in working memory at the same time, according to the researchers.

"By having these different bursts coming at different moments in time, you can keep different items in memory separate from one another," says Earl Miller, the Picower Professor in MIT's Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences.

Miller is the senior author of the study, which appears in the March 17 issue of Neuron. Mikael Lundqvist, a Picower Institute postdoc, and Jonas Rose, now at University of Tubingen in Germany, are the paper's lead authors.

Bursts of activity

Starting in the early 1970s, experiments showed that when an item is held in working memory, a subset of neurons fires continuously. However, these and subsequent studies of working memory averaged the brain's activity over seconds or even minutes of performing the task, Miller says.

"The problem with that is, that's not the way the brain works," he says. "We looked more closely at this activity, not by averaging across time, but from looking from moment to moment. That revealed that something way more complex is going on."

Miller and his colleagues recorded neuron activity in animals as they were shown a sequence of three colored squares, each in a different location. Then, the squares were shown again, but one of them had changed color. The animals were trained to respond when they noticed the square that had changed color -- a task requiring them to hold all three squares in working memory for about two seconds.

The researchers found that as items were held in working memory, ensembles of neurons in the prefrontal cortex were active in brief bursts, and these bursts only occurred in recording sites in which information about the squares was stored. The bursting was most frequent at the beginning of the task, when the information was encoded, and at the end, when the memories were read out.

Filling in the details

The findings fit well with a model that Lundqvist had developed as an alternative to the model of sustained activity as the neural basis of working memory. According to the new model, information is stored in rapid changes in the synaptic strength of the neurons. The brief bursts serve to "imprint" information in the synapses of these neurons, and the bursts reoccur periodically to reinforce the information as long as it is needed.

The bursts create waves of coordinated activity in the gamma frequency (45 to 100 hertz), like the ones that were observed in the data. These waves occur sporadically, with gaps between them, and each ensemble of neurons, encoding a specific item, produces a different burst of gamma waves. "It's like a fingerprint," Lundqvist says.

When this activity is averaged over several repeated trials, it appears as a smooth curve of continuous activity, just as the older models of working memory suggested. However, the MIT team's new way of measuring and analyzing the data suggests that the full picture is much different.

"It's like for years you've been listening to music from your neighbor's apartment and all you can hear is the thumping bass part. You're missing all the details, but if you get close enough to it you see there's a lot more going on," Miller says.

The findings suggest that it would be worthwhile to look for this kind of cyclical activity in other cognitive functions such as attention, the researchers say. Oscillations like those seen in this study may help the brain to package information and keep it separate so that different pieces of information don't interfere with each other.

"Your brain operates in a very sporadic, periodic way, with lots of gaps in between the information the brain represents," Miller says. "The mind is papering over all the gaps and bubbly dynamics and giving us an impression that things are happening in a smooth way, when our brain is actually working in a very periodic fashion, sending packets of information around."
-end-


Massachusetts Institute of Technology

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.