Nav: Home

Tighten the grip on metastasis

March 17, 2017

Metastasis is the major cause of cancer-related death and its appearance remains a phenomenon that is difficult to predict and manage. We now know that, prior to the arrival of the cancer cells, tumours prepare the ground in the organ that they will later colonise. These areas with ideal conditions for the onset of metastasis are called pre-metastatic niches and targeting them will help improve patient survival. These questions are the subject of a review paper published in Nature Reviews by an international group of experts in this field, including Héctor Peinado, head of the Microenvironment and Metastasis Group at the Spanish National Cancer Research Centre (CNIO).

There are certain areas and organs in the body where the onset of metastasis is more common. Lungs, bones, brain... What's more, each tumour has a predilection for colonising specific areas. The problem is that we are still unable to anticipate where metastasis occurs and when it does, it is often too late. However, Peinado and his colleagues have known for some years that the areas that are going to be affected by metastasis undergo changes before the arrival of the tumour cells.

These areas are what David Lyden, Weill Cornell Medicine (USA), termed 'pre-metastatic niches' several years ago. In these niches, we can detect changes that will later allow the survival and growth of tumour cells. These changes are caused by soluble factors and extracellular vesicles secreted by the primary tumour. "Emerging evidence from our laboratory and others identified pre-metastatic niches in patients with various cancers. This is a paradigm shift in our understanding of metastasis that will be the cornerstone for developing strategies for the preventive treatment of metastasis, rather than treating metastasis after the fact."


Therefore, the challenge is - and this is the topic of the paper - to be able to identify the niches before metastasis occurs. "The three events that take place and that could serve to detect these niches are vascular leakiness, infiltration of immune cells (local inflammation) and remodelling of the organ," explains Peinado. These three processes facilitate the emergence of metastasis but can also serve as markers of future metastasis. "A better understanding of the biology underlying the inflammation and blood vessel dysfunction in pre-metastatic niches will allow us to identify therapies to block metastatic progression", says Haiying Zhang, the paper's co-author, also from Weill Cornell Medicine.

"The more we move forward in the early detection of metastasis, the higher the survival rates will be," said Peinado. This is, precisely, the crux of the matter, since most cancer patients succumb mainly to metastasis, while the treatment of the primary tumours is quite advanced. "If we can predict that a tumour is going to metastasize and detect where, and we can stop it in that time window, it will be easier to treat cancer," pointed out Peinado.

One of the things this review assesses is the development of molecular imaging techniques that can complement classic tests to analyse and detect the formation of these future metastatic niches. By using markers that indicate the formation of a niche, it would be possible to learn where a tumour is likely to metastasize.

The next step would be to prevent the metastasis. Once again, the study of these niches is providing information on how this can be achieved. Acting on changes in the blood vessels, blocking the signals that primary tumours send, or keeping these niches in a dormant state (as happens for years in some patients) are some of the strategies that are being explored in the laboratory. "Identifying strategies to restore immune function in pre-metastatic niches will also be crucial for the success of therapies aimed at preventing metastasis", added Irina Matei, also a co-author from Weill Cornell Medicine.

"All this could contribute to prevention and therapy, but -Peinado says- although the concept is very interesting and has great potential, much work remains to be done to done to translate from bench to bedside". There are ongoing studies involving various tools and approaches such as the analysis of circulating vesicles (exosomes) in liquid biopsies with promising results to predict metastatic outcome and organotropism in the pre-clinical setting, but we will have to wait for it to reach the clinical phase.

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at