Nav: Home

Scientists reveal open-ringed structure of Cdt1-Mcm2-7 complex

March 17, 2017

Scientists from the Hong Kong University of Science & Technology(HKUST) and Tsinghua University have revealed the open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer (DH).

Their findings were published online on Feb 13 in Nature Structural Biology and Molecular Biology (doi:10.1038/nsmb.3374).

Every cell division requires the prior complete duplication of the genetic DNA so that each daughter cell inherits an exact copy from the mother cell. Replication of DNA is carried out by the DNA replication machine known as the Replisome. The Replisome is a complex assembly of engines that is intricately built to allow the machine to separate the two strands of DNA and each strand to serve as a template for the synthesis of two daughter DNAs. In order to understand the mechanism for DNA unwinding, it is important to know the structure of the core component of the engine or helicase that drives the translocation of the machine as it separates the two strands.

"Utilizing cryo electron microscopy, we were able to study closely the structure of the Mcm2-7 hexamer, which forms the core of the helicase," said HKUST professor Bik Tye. "We showed that the core is a left-handed coil or spring, not a closed ring as previously believed."

The minichromosome maintenance complex (MCM) hexameric complex (Mcm2-7) forms the core of the eukaryotic replicative helicase. During G1 phase, two Cdt1-Mcm2-7 heptamers are loaded onto each replication origin by the origin-recognition complex (ORC) and Cdc6 to form an inactive MCM double hexamer (DH), but the detailed loading mechanism remains unclear. Here we examine the structures of the yeast MCM hexamer and Cdt1-MCM heptamer from Saccharomyces cerevisiae. Both complexes form left-handed coil structures with a 10-15-Å gap between Mcm5 and Mcm2, and a central channel that is occluded by the C-terminal domain winged-helix motif of Mcm5. Cdt1 wraps around the N-terminal regions of Mcm2, Mcm6 and Mcm4 to stabilize the whole complex.

"The intrinsic coiled structures of the precursors provide valuable insights into the DH formation," said Dr. Yuanliang Zhai of HKUST, a co-author of the paper. "This suggests a spring-action model for the MCM during the initial origin melting and the subsequent DNA unwinding. "

Establishing the open coil as the ground state of the MCM hexamer has profound implications for the DNA-replication mechanism during both initiation and elongation.

First, upon activation of the DH, energy stored in the planar rings will be unleashed to provide the mechanical energy to uncouple the DH as each SH springs open to allow the escape of the melted single-stranded DNAs through the narrow Mcm2-Mcm5 gate to opposite sides. Second, the open-coil structure of the Mcm2-7 hexamer may determine the mode of action of the CMG helicase in its translocation along single-stranded DNA during DNA unwinding.

'This is all but a first step towards developing a thorough understanding of the action of Mcm2-7 complex in DNA unwinding," said professor Bik. "Ultimately, to determine the mechanism of ATP-hydrolysis-driven translocation of the catalytic MCM core, researchers will need high-resolution structures of the CMG helicase or the replisome in different functional states that will enable them to distinguish the identity of bound nucleotides at each ATPase center."

Hong Kong University of Science and Technology

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".