Nav: Home

TGen study of ASU football team produces largest known dataset for concussion diagnostics

March 17, 2017

PHOENIX, Ariz. -- March 17, 2017 -- Following a three-year study of the Arizona State University football program, researchers at the Translational Genomics Research Institute (TGen) have created the largest dataset to date of extracellular small RNAs, which are potential biomarkers for diagnosing medical conditions, including concussions.

Details of the dataset were published today in Scientific Reports, an online open-access journal of the Nature Publishing Group.

The study amassed a collection of biomarkers from the ASU student-athletes' biofluids: blood, urine and saliva. A portion of that information will be used with data from helmet sensors that recorded the number, intensity and direction of head impacts during games and practices from the 2013-16 football teams. TGen researchers are using that combined data to potentially develop new diagnostic and therapeutic tools.

"Large datasets -- examining different biofluids, isolation methods, detection platforms and analysis tools -- are important to further our understanding of the extent and types of extracellular materials present when someone is injured or develops disease," said Dr. Kendall Van Keuren-Jensen, TGen Associate Professor of Neurogenomics and Co-Director of TGen's Center for Noninvasive Diagnostics, and one of the study's senior authors.

"Concussion safety, protocol and diagnostics are key components of Sun Devil Athletics' student-athlete welfare program," said Ray Anderson, ASU Vice President for University Athletics. "Our partnership with TGen and the research conducted with these biomarkers will ideally provide doctors, trainers and administrators with a mechanism to proactively safeguard the health of our student-athletes. We are proud and excited to be a part of this groundbreaking study that will significantly expand research in this important area of scientific discovery."

Because the data is being published in an open access journal, they are available to aid other researchers studying how to develop tests for the detection and extent of injuries involving everything from automobile accidents to battlefield explosions.

Sensors in the ASU student-athlete football helmets were wirelessly connected to a field-level computer as part of the Sideline Response System -- a head impact monitoring and research tool developed and deployed by Riddell, a leading provider of helmets to the NFL and major college football teams.

"Riddell is pleased to be engaged with TGen on its important research as it has great potential to help the scientific community worldwide in the development of new breakthroughs, particularly in the area of brain health," said Dan Arment, President and Chief Executive Officer of Riddell, the industry leader in football helmet technology and innovation.

TGen researchers used advanced genomic sequencing to identify the biomarkers of extracellular RNA (exRNA), strands of genetic material that are released from cells, and which can be detected in biofluids. TGen sequenced, or spelled out, the chemical letters that make up these biomarkers from among 183 blood samples, 204 urine samples and 46 saliva samples derived from among 55 consenting student-athletes, ages 18-25.

"The small RNA profile of each biofluid is distinct," the study said. "These data significantly contribute to the current number of sequenced exRNA samples from young healthy individuals."

By identifying biofluids associated with healthy individuals, researchers hope to use these as standards for assessing disease and injury: "Establishing a baseline for individuals when they are healthy may provide the most meaningful comparisons when exploring early indicators of disease, severity or outcome," the study said.

"These data will help inform us about how best to develop additional tools to enrich and capture specific types of information," according to the paper, titled: "Total Extracellular Small RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects."

"We have tried to provide the most comprehensive profile of the small RNA species detected in our samples," said Dr. Matt Huentelman, TGen Professor of Neurogenomics, and one of the study's lead authors. "This information may prove to be essential as the field moves toward using RNA expression changes for the detection of health, disease and injury."
-end-
This study was supported by Riddell Inc., grants from the Flinn Foundation, and individual contributions to the TGen Foundation from Ken and Randy Kendrick, and from Bob and Karen Hobbs.

Also contributing to this study were ASU Sports Medicine, Barrow Neurological Institute, Yale University, and A.T. Still University.

About TGen

Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with neurological disorders, cancer, and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. TGen is allied with City of Hope, a world-renowned independent research and cancer and diabetes treatment center. This precision medicine alliance enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. For more information, visit: http://www.tgen.org. Follow TGen on Facebook, LinkedIn and Twitter @TGen.

About Arizona State University

Arizona State University has developed a new model for the American Research University, creating an institution that is committed to access, excellence and impact. ASU measures itself by those it includes, not by those it excludes. As the prototype for a New American University, ASU pursues research that contributes to the public good, and assumes major responsibility for the economic, social and cultural vitality of the communities that surround it.

About Riddell

Riddell is a premier designer and developer of football helmets, protective sports equipment, head impact monitoring technologies, apparel and related accessories. A recognized leader in helmet technology and innovation, Riddell is the leading manufacturer of football helmets and shoulder pads, and a top provider of reconditioning services (cleaning, repairing, repainting and recertifying existing equipment). For more information, visit our website at http://www.riddell.com, like the Riddell Facebook page, or follow Riddell on Instagram and Twitter @RiddellSports.

Media Contacts:

Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Thomas Lenneberg
Arizona State University
Office 480-727-7705
Cell 503-341-7677
thomas.lenneberg@asu.edu

Erin Griffin
Riddell
224-585-5231
eegriffin@riddellsports.com

The Translational Genomics Research Institute

Related Biomarkers Articles:

Novel strategy using microRNA biomarkers can distinguish melanomas from nevi
Melanoma is the least common but one of the most deadly skin cancers.
Semen miRNAs could be non-invasive biomarkers for prostate cancer
Researchers of the Human Molecular Genetics group at the Bellvitge Biomedical Research Institute (IDIBELL), led by Dr.
Scientists have found longevity biomarkers
An international group of scientists studied the effects of 17 different lifespan-extending interventions on gene activity in mice and discovered genetic biomarkers of longevity.
After concussion, biomarkers in the blood may help predict recovery time
A study of high school and college football players suggests that biomarkers in the blood may have potential use in identifying which players are more likely to need a longer recovery time after concussion, according to a study published in the July 3, 2019, online issue of Neurology, the medical journal of the American Academy of Neurology.
3D-printed device detects biomarkers of preterm birth
Preterm birth (PTB) -- defined as birth before the 37th week of gestation -- is the leading complication of pregnancy.
NUS researchers identified new biomarkers associated with 'chemobrain'
Researchers from the National University of Singapore have identified new biomarkers related to the cognitive impairment associated with cancer known as chemobrain.
Novel biomarkers for noninvasive diagnosis of NAFLD-related fibrosis
With an estimated 25% of people worldwide affected by nonalcoholic fatty liver disease (NAFLD), there is a large unmet need for accurate, noninvasive measures to enhance early diagnosis and screening of hepatic fibrosis.
Novel biomarkers & therapeutic targets for atherosclerotic cardiovascular diseases
In this review, the researchers describe the analytical techniques and workflow used in untargeted metabolomics.
Biomarkers facilitate early detection of glaucoma
Researchers at Ruhr-Universität Bochum have identified new potential biomarkers that may facilitate early detection of glaucoma in patients.
New biomarkers of inflammation identified as risk of polyneuropathy
Polyneuropathy is one of the most common complications in people with diabetes.
More Biomarkers News and Biomarkers Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.