Nav: Home

Identification of molecular origins underlying the interfacial slip

March 17, 2017

A team of researchers, affiliated with UNIST has discovered the fundamental principles of handling polymers, which constitute the basis of man-made materials, such as plastics, paints, and even consmatics.

In this work, Professor Chunggi Baig of Energy and Chemical Engineering and his team presented, for the first time, the detailed molecular mechanisms and dynamics underlying slip phenomena, which have yet to be established in interfacial polymer rheology.

They presented the intrinsic molecular characteristics of the slip phenomena by using atomistic nonequilibrium molecular dynamics simulations of polyethylene melts under shear flow. Polymer melts are polymers with an overall number average molecular weight of 10,000 in the liquid-like melt state without solvent.

This interfacial slip phenomena, which occurs at the interface with other objects, has been pointed out as the major cause of melt instability, which degrades the quality of plastics. Therefore, in a system that has interface, such as biomembranes and polymer thin films, the interfacial slip phenomena is definitely one of the most important variables for determining the properties of polymeric materials.

Therefore, in-depth information of molecular mechanisms and dynamics behind, such interfacial properties is essential for producing high-quality plastics, as well as for predicting and controling intriguing behaviors of various confined systems.

"One example of this interfacial slip phenomenon is when the polymer melts slip at the mold boundary and causes surface roughness or cracking," says Sohdam Jeong of Energy and Chemical Engineering at UNIST, the first author of the study. "Through this study, I wanted to solve the fundamental principles of this slip phenomena on a molecular level."

In their efforts to reveal the molecular origins underlying the interfacial slip, the research team analyzed the slip phenomena in detail, with respect to molecular mechanisms and dynamics of interfacial chains and their rheological characteristics by directly tracking down the individual chain motion near the interface.

In the study, the research team identified three distinctive characteristic regimes with regard to the degree of slip at the interface and revealed the underlying molecular mechanisms for each regime: (i) the z-to-x chain rotation mechanism in the vorticity plane in the weak flow regime, which effectively diminishes the wall friction against chain movement along the flow direction, (ii) the repetitive chain detachment-attachment (out-of-plane wagging) and disentanglement mechanism in the intermediate regime, and (iii) irregular (chaotic) chain rotation and tumbling mechanisms in the strong flow regime.

"Depending on the types of polymeric materials and the boundary structure of the interface, the interface slip might be slightly different," says Sohdam.

"The findings of this study help us comprehend the fundamental characteristics of the interfacial slip, and understand various rheological phenomena and properties exhibited by interfacial polymeric systems," says Professor Baig.
This work has been supported by the National Research Foundation of Korea (NRF) and the results of the study have been appeared in the February issue of the prestigious Journal of Rheology, a vital resource for researchers working in fields as diverse as polymer physics and fluid mechanics.

Journal Reference

Sohdam Jeong, et al., "Molecular mechanisms of interfacial slip for polymer melts under shear flow," Journal of Rheology, (2017).

Ulsan National Institute of Science and Technology(UNIST)

Related Polymers Articles:

Oyster shells inspire new method to make superstrong, flexible polymers
Columbia Engineers developed a method inspired by the nacre of oyster shells, a composite material with extraordinary mechanical properties, including great strength and resilience.
The brighter side of twisted polymers
A strategy to produce highly fluorescent nanoparticles through careful molecular design of conjugated polymers has been developed by KAUST researchers.
New strategy produces stronger polymers
MIT researchers have found a way to reduce the number of loops in polymer networks such as gels, plastics, and rubber.
Team highlights work on tuning block polymers for nanostructured systems
High-performance materials are enabling major advances in a wide range of applications from energy generation and digital information storage to disease screening and medical devices.
Estimating the glass transition temperature for polymers in 'confined geometries'
Polystyrene has a glass transition temperature of about 100 C -- at room temperature it behaves like a solid material.
Rapid Imaging of Polymers Could Lead to Better Bioimaging
A recent study by researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois identifies a method of Quantum Cascade Laser-based (QCL) infrared spectroscopic imaging that provides a more rapid method than conventional Fourier transform infrared imaging (FT-IR) to examine spherulites, large semicrystalline polymer samples, in order to identify chemical and structural properties.
Macromolecules: Light to design precision polymers
Chemists of Karlsruhe Institute of Technology have succeeded in specifically controlling the setup of precision polymers by light-induced chemical reactions.
International engineering team develop self-powered mobile polymers
n international group involving Inha University, University of Pittsburgh and the Air Force Research Laboratory has built upon their previous research and identified new materials that directly convert ultraviolet light into motion without the need for electronics or other traditional methods.
'Bottlebrush' polymers make dielectric elastomers increasingly viable for use in devices
A multi-institutional research team has developed a new electroactive polymer material that can change shape and size when exposed to a relatively small electric field.
NIST-made 'sun and rain' used to study nanoparticle release from polymers
In a recently published paper, researchers from the National Institute of Standards and Technology (NIST) describe how they subjected a commercial nanoparticle-infused coating to NIST-developed methods for accelerating the effects of weathering from ultraviolet (UV) radiation and simulated washings of rainwater.

Related Polymers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".