Nav: Home

Human brain networks developing in adolescence related to evolutionary expansion

March 17, 2017

PHILADELPHIA - Adolescence marks not only the period of physical maturation bridging childhood and adulthood, but also a crucial period for remodeling of the human brain. A Penn study reveals new patterns of coordinated development in the outer layer of the cerebrum of the human brain and describes how these structural patterns relate to functional networks.

The team found the convergence between structural and functional networks was inversely related to functional complexity. Motor, sensory, visual and functional networks aligned to distinct structural networks. This unique representation of brain maturation may open new opportunities for future studies into many psychiatric disorders that might begin during this age. A team from the Perelman School of Medicine at the University of Pennsylvania publishes the findings this week in the Proceedings of the National Academy of Sciences.

Brain remodeling during adolescence supports the tuning of behavior and cognitive abilities, including reasoning, coordination, decision making, motivation, and regulation of emotions. Measuring these brain parameters during development is valuable for understanding both normal brain maturation and abnormalities associated with behavioral problems and psychiatric disorders. In contrast to the small sample sizes in this subject area's previous research, this cohort of 934 youths ages 8-22 from the Philadelphia Neurodevelopmental Cohort, a collaboration between Penn Medicine and the Children's Hospital of Philadelphia (led by Raquel E. Gur, MD, PhD, a professor of Psychiatry) offers the opportunity to evaluate these complex patterns of brain development.

Many previous studies have examined the structure and function of the brain, but there has been a gap between brain imaging studies and the biological processes that drive the development of brain networks. This team took high-dimensional, complex data that would otherwise be tough to understand - and boiled it down to a limited number of developing structural brain networks (18 in total).

"In an era of big, complex data, it's sometimes difficult to see what's going on," said Christos Davatzikos, PhD, professor of Radiology, and senior author on the paper. "So you look at this data and think there may be some relationships, but our brain and visual interpretation can only go so far. Now we have powerful multivariate methods that can put all the data together and see deeper what's behind it, and find patterns never seen before."

To look deeper into these patterns of brain development, the team used a sophisticated technique called non-negative matrix factorization, to simultaneously analyze complex patterns of brain structure and identify patterns of development in adolescence. Unlike previous brain representations that relied on patterns of ridges and folds on the surface of the brain, called gyri and sulci, the team looked at how elements change together in a coordinated fashion.

This approach revealed a set of structural brain networks that have clear functional and evolutionary significance. Indeed, the degree to which these structural networks change in adolescence is related to the rate of evolution, as measured by the expansion of the cortical areas, from the brain of a monkey.

"The most plastic parts of the brain that change during adolescence are also those that make us most human," said Theodore D. Satterthwaite, MD, assistant professor of Psychiatry and equally contributing senior author on the paper. "Without this method, we couldn't see these coordinated patterns of change."

"Looking at the brain in a data-driven way, we see systematic relationships between certain regions," said Aristeidis Sotiras, PhD, a research associate and first author on the paper. "This allows us to identify the moving parts of the brain, which opens new avenues for research into an individual's risk for developing specific diseases based on understanding how these parts get broken during adolescence."

Similar to the use of height and weight growth charts in pediatrics, looking at which brain regions change significantly compared to a normal development baseline, could show how vulnerable someone is to a specific disorder. Deviations of processes that drive development and affect structural networks could lead to psychiatric disorders. Next, the team hopes to study the association between clinical symptoms and specific brain patterns.
-end-
Co-authors include Jon B. Toledo, Raquel E. Gur, and Ruben C. Gur, all from Penn.

This work was funded in part by National Institute of Mental Health Grants MH107235, MH089983, MH089924, MH096891, MH101111, and MH107703; National Institute of Biomedical Imaging and Bioengineering Grant EB022573; National Institute of Neurological Disorders and Stroke Grant NS042645; and the Dowshen Program for Neuroscience.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.

University of Pennsylvania School of Medicine

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".