Nav: Home

Human skull evolved along with two-legged walking, study confirms

March 17, 2017

AUSTIN, Texas -- The evolution of bipedalism in fossil humans can be detected using a key feature of the skull -- a claim that was previously contested but now has been further validated by researchers at Stony Brook University and The University of Texas at Austin.

Compared with other primates, the large hole at the base of the human skull where the spinal cord passes through, known as the foramen magnum, is shifted forward. While many scientists generally attribute this shift to the evolution of bipedalism and the need to balance the head directly atop the spine, others have been critical of the proposed link. Validating this connection provides another tool for researchers to determine whether a fossil hominid walked upright on two feet like humans or on four limbs like modern great apes.

Controversy has centered on the association between a forward-shifted foramen magnum and bipedalism since 1925, when Raymond Dart discussed it in his description of "Taung child," a 2.8 million-year-old fossil skull of the extinct South African species Australopithecus africanus. A study published last year by Aidan Ruth and colleagues continued to stir up the controversy when they offered additional criticisms of the idea.

However, in a study published in the Journal of Human Evolution, UT Austin anthropology alumna Gabrielle Russo, now an assistant professor at Stony Brook University, and UT Austin anthropologist Chris Kirk built on their own prior research to show that a forward-shifted foramen magnum is found not just in humans and their bipedal fossil relatives, but is a shared feature of bipedal mammals more generally.

"This question of how bipedalism influences skull anatomy keeps coming up partly because it's difficult to test the various hypotheses if you only focus on primates," Kirk said. "However, when you look at the full range of diversity across mammals, the evidence is compelling that bipedalism and a forward-shifted foramen magnum go hand-in-hand."

In this study, Russo and Kirk expanded on their previous research (published in the same journal in 2013) by using new methods to quantify aspects of foramen magnum anatomy and sampling the largest number of mammal species to date.

To make their case, Russo and Kirk compared the position and orientation of the foramen magnum in 77 mammal species including marsupials, rodents and primates. Their findings indicate that bipedal mammals such as humans, kangaroos, springhares and jerboas have a more forward-positioned foramen magnum than their quadrupedal close relatives.

"We've now shown that the foramen magnum is forward-shifted across multiple bipedal mammalian clades using multiple metrics from the skull, which I think is convincing evidence that we're capturing a real phenomenon," Russo said.

Additionally, the study identifies specific measurements that can be applied to future research to map out the evolution of bipedalism. "Other researchers should feel confident in making use of our data to interpret the human fossil record," Russo said.
-end-


University of Texas at Austin

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...