Nav: Home

Blocking sugar structures on viruses and tumor cells

March 17, 2020

The laboratory directed by Arne Skerra, Professor of Biological Chemistry, has its focus on designing artificial binding proteins for therapeutic applications. The laboratory's current research findings are paving the way for the development of new types of binding proteins for biological sugar structures, which play a significant role in cancer as well as infectious diseases.

Recognizing biological sugar structures

"The recognition of specific sugar molecules, or so-called carbohydrates, is of vital importance in many biological processes," Prof. Skerra explains. Most cells carry a marker consisting of sugar chains which are attached to the outside of the cell membrane or to the membrane proteins, thus enabling the body to identify where these cells belong or whether certain cells are alien. Pathogens also have sugar structures of their own, or they can bind to these.

Proteins, which perform a wide range of functions within cells, generally have only low affinity to sugars. Thus, their molecular recognition poses a challenge. The reason: water molecules look similar to the sugar molecules, meaning that they are basically hidden in the aqueous environment of the cells. Prof. Skerra's research group therefore set out to design an artificial binding protein with a peculiar chemical composition which makes it easier to bind to biological sugar structures.

A boric acid group implemented into a protein as amino acid

Amino acids are the building blocks of proteins. As a rule, nature only uses 20 amino acids in all living organisms. "Using the possibilities opened up by synthetic biology, we have employed an additional artificial amino acid," reports researcher Carina A. Sommer.

"We have succeeded in incorporating a boric acid group, which exerts intrinsic affinity to sugar molecules, into the amino acid chain of a protein. In doing this, we have created an entirely new class of binding protein for sugar molecules," Sommer explains. This artificial sugar-binding function is superior to natural binding proteins (so-called lectins) both in strength and with regard to possible sugar specificities.

"The sugar-binding activity of boric acid and its derivatives has been known for nearly a century," says Prof. Skerra. "The chemical element boron is common on earth and has low toxicity, but so far has largely remained unexplored by organisms."

"By using X-ray crystallography, we have succeeded in unraveling the crystal structure of a model complex of this artificial protein, which allowed us to validate our biomolecular concept," explains scientist Dr. Andreas Eichinger.

The next step: towards medical application

Following approximately five years of fundamental scientific research, the findings from Prof. Skerra's laboratory can now be applied to practical medical needs. Prof. Skerra points out: "Our results should not only be used to support the future development of new carbohydrate ligands in biological chemistry, but should also pave the way for creating high-affinity agents for controlling or blocking medically-relevant sugar structures on cell surfaces."

Such a "blocking agent" could be used for conditions in which strong cell growth is evident or when pathogens are attaching themselves to cells, for example in oncology and virology. If we are successful in blocking the sugar-binding function and in slowing down the progress of a disease, this would give the patient's immune system sufficient time to mobilize the body's natural defense.
-end-


Technical University of Munich (TUM)

Related Amino Acids Articles:

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.