Nav: Home

Mysterious ancient sea-worm pegged as new genus after half-century in 'wastebasket'

March 17, 2020

LAWRENCE -- When a partial fossil specimen of a primordial marine worm was unearthed in Utah in 1969, scientists had a tough go identifying it. Usually, such worms are recognized and categorized by the arrangement of little knobs on their plates. But in this case, the worm's plates were oddly smooth, and important bits of the worm were missing altogether.

Discouraged, researchers placed the mystery worm in a "wastebasket" genus called Palaeoscolex, and interest in the lowly critter waned for the next 50 years.

That all changed recently when Paul Jamison, a teacher from Logan, Utah, and private collector, and his student Riley Smith were hunting fossils in the Spence Shale in Utah, a 506-million-year-old geologic unit housing a plethora of exceptionally preserved soft-bodied and biomineralized fossils. (Paleontologists call such a mother lode of fossils a "Lagerstätte.") There, Smith discovered a second, more thoroughly preserved example of the worm.

Eventually, thanks to Jamison's donation, the new fossil specimen arrived at the University of Kansas Biodiversity Institute, where Anna Whitaker, a graduate student in museum studies, researched and analyzed the worm with scanning electron microscopes, energy-dispersive X-ray spectrometry and optical microscopy.

At last, Whitaker determined the worm represented a new genus of Cambrian sea worm heretofore unknown to science. She's the lead author of a description of the worm just published in the peer-reviewed paleontological journal PalZ.

"Before the new species that we acquired there was only one specimen known from the Spence Shale," she said. "But with our new specimen we discovered it had characteristics that the original specimen didn't have. So, we were able to update that description, and based on these new characteristics -- we decided it didn't fit in its old genus. So, we moved it to a new one."

Whitaker and her colleagues -- Jamison, James Schiffbauer of the University of Missouri and Julien Kimmig of KU's Biodiversity Institute -- named the new genus Utahscolex.

"We think they're closely related to priapulid worms that exist today -- you can find them in the oceans, and they are very similar to priapulids based on their mouth parts," Whitaker said. "What's characteristic about these guys is that they have a proboscis that can evert, so it can turn itself inside out and it's covered with spines -- that's how it grabs food and sucks it in. So, it behaved very similarly to modern priapulid worms."

While today, Utah is not a place you'd look for marine life, the case was different 506 million years ago, when creatures preserved in the Spence Shale were fossilized.

"The Spence Shale was a shelf system, and it's really interesting because it preserves a lot of environments -- nearshore to even deeper offshore, which is kind of unusual for a Lagerstätte, and especially during the Cambrian. These animals were living in kind of a muddy substrate. This worm was a carnivore, so it was preying on other critters. But there would have been whole diversity of animals -- sponges, and trilobites scuttling along. We have very large, for the time, bivalve arthropods that would be predators. The Spence has a very large diversity of arthropods. It would have looked completely alien to us today."

Whitaker hopes to complete her master's degree this spring, then to attend the University of Toronto to earn her doctorate. The description of Utahscolex is Whitaker's first academic publication, but she hopes it won't be her last. She said the opportunity to perform such research is a chief reason for attending KU.

"I came for the museum studies program," she said. "It's one of the best in the country, and the program's flexibility has allowed me to focus on natural history collections, which is what I hopefully will have a career in, and also gain work experience in the collections and do research -- so it's kind of everything I was looking for in the program."

While ancient sea worms could strike many as a meaninglessly obscure subject for such intense interest and research, Whitaker said filling in gaps in the fossil record leads to a broader understanding of evolutionary processes and offers more granular details about the tree of life.

"I know some people might say, 'Why should we care about these?'" she said. "But the taxonomy of naming all these species is really an old practice that started in the 1700s. It underpins all the science that we do today. Looking at biodiversity through time, we have to know the species diversity; we have to know as correctly as we can how many species there were and how they were related to each other. This supports our understanding of -- as we move into bigger and bigger, broader picture -- how we can interpret this fossil record correctly, or as best we can."
-end-


University of Kansas

Related Biodiversity Articles:

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.
Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.
Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.
Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.
Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Mapping global biodiversity change
A new study, published in Science, which focuses on mapping biodiversity change in marine and land ecosystems shows that loss of biodiversity is most prevalent in the tropic, with changes in marine ecosystems outpacing those on land.
What if we paid countries to protect biodiversity?
Researchers from Sweden, Germany, Brazil and the USA have developed a financial mechanism to support the protection of the world's natural heritage.
Grassland biodiversity is blowing in the wind
Temperate grasslands are the most endangered but least protected ecosystems on Earth.
The loss of biodiversity comes at a price
A University of Cordoba research team ran the numbers on the impact of forest fires on emblematic species using the fires in Spain's Doñana National Park and Segura mountains in 2017 as examples
More Biodiversity News and Biodiversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.