Nav: Home

Microbes can grow on nitric oxide

March 18, 2019

Nitric oxide is a fascinating and versatile molecule, important for all living things as well as our environment: It is highly reactive and toxic, it is used as a signaling molecule, it depletes the ozone layer in our planet's atmosphere and it is the precursor of the greenhouse gas nitrous oxide (N2O). Nitrogen oxides are also pollutants discharged with exhaust gases, for example from combustion engines in cars, and are harmful to human health.

Intriguingly, long before there was oxygen on Earth, nitric oxide was available as a high-energy oxidant, and might have played a fundamental role in the emergence and evolution of life on Earth. A study by Max-Planck-scientist Boran Kartal and colleagues now published in Nature Communications sheds a new light on microbial transformations of this molecule.

Yes they can - with implications for our climate

One major question about nitric oxide remained unanswered up to now: Can organisms use it to grow? "One would think so," Kartal explains, "as nitric oxide has been around since the emergence of life on earth." However, no microbe growing on NO has been found - until now. Kartal and his colleagues from Radboud University in the Netherlands have now discovered that the anaerobic ammonium-oxidizing (anammox*) bacteria directly use NO to grow. In detail, these microorganisms couple ammonium oxidation to NO reduction, producing nothing but dinitrogen gas (N2) in the process.

The latter - the sole production of N2 - is particularly intriguing: Some microbes convert NO to nitrous oxide (N2O), which is a potent greenhouse gas. N2, in contrast, is harmless. Thus, each molecule of NO that is transformed into N2 instead of N2O is one less molecule adding to climate change. "In this way, anammox bacteria reduce the amount of NO available for N2O production, and reduce the amount of released greenhouse gas", Kartal explains. "Our work is interesting in understanding how anammox bacteria can regulate N2O and NO emissions from natural and man-made ecosystems, such as wastewater treatment plants, where these microorganisms contribute significantly to N2-release to the atmosphere."

Rethinking the nitrogen cycle

Nitric oxide is a central molecule in the global cycling of nitrogen. "These findings change our understanding of the earth's nitrogen cycle. Nitric oxide has been primarily thought of as a toxin, but now we show that anammox bacteria can make a living from converting NO to N2", says Kartal. The present study raises new questions. "Anammox, a globally important microbial process of the nitrogen cycle relevant for the earth's climate, does not work the way we assumed it did." Moreover, other microbes than the ones investigated here could be using NO directly as well. Anammox bacteria are found all over the planet. "In this sense, the anammox microbes growing on nitric oxide could also be basically everywhere", Kartal continues.

One answer, many new questions

Now, Kartal and his group at Max Planck Institute in Bremen are exploring different ecosystems from all around the world, hunting for specialized nitric oxide converting microorganisms. They want to understand better how microbes use NO in environments both with and without oxygen. This will probably pave the way to the discovery of new enzymes involved in nitric oxide transformation. "Basically, we want to understand how organisms can make a living on NO."
-end-
* What is anammox?

Anammox, short for anaerobic ammonium oxidation, is a globally important microbial process of the nitrogen cycle. It takes place in many natural and man-made environments. In the process, nitrite and ammonium ions are converted directly into dinitrogen and water and nitrate.

Anammox is responsible for approximately 50% of the N2 gas produced in the oceans. It thus removes large amounts of bioavailable nitrogen from the seas. This nutrient nitrogen is then no longer available to other organisms; this way anammox can control oceanic primary productivity.

The anammox process is also of interest in wastewater treatment. Removing nitrogen compounds with the help of anammox bacteria is significantly cheaper than traditional methods and reduces emissions of the greenhouse gas CO2.

Original publication:

Ziye Hu, Hans JCT Wessels, Theo van Alen, Mike SM Jetten and Boran Kartal: Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications. DOI: 10.1038/s41467-019-09268-w

Participating institutions:

Max Planck Institute for Marine Microbiology,?Bremen, Germany

Radboud University, Nijmegen, The Netherlands ?

Please direct your queries to:

Dr. Boran Kartal
Head of the Mi¬cro¬bial Physiology Group
Max Planck Institute for Marine Microbiology,?Bremen, Germany
Phone: +49 421 2028-645
E-Mail: bkartal@mpi-bremen.de

Dr. Fanni Aspetsberger
Press officer
Max Planck Institute for Marine Microbiology,?Bremen, Germany
Phone: +49 421 2028-947
E-Mail: faspetsb@mpi-bremen.de

Max Planck Institute for Marine Microbiology

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.