Nav: Home

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even be a back-up energy supply that could save and extend the life of future Mars rovers.

University of Warwick third year engineering undergraduates have in recent years been set the task of the examining the puzzle of why Aspen leaves quiver in the presence of a slightest breeze. University of Warwick Engineering researchers Sam Tucker Harvey, Dr Igor A. Khovanov, and Dr Petr Denissenko were inspired to look more closely at this task they were annually setting for their students and to take the phenomenon one step further.

They decided to investigate whether the underlying mechanisms that produce the low wind speed quiver in Aspen leaves could efficiently and effectively generate electrical power, simply by exploiting the wind generated mechanical movement of a device modelled on the leaf. They have today 18th March 2019 published the answer to that question as a paper entitled "A Galloping Energy Harvester with Flow Attachment" in Applied Physics Letters and the answer is a resounding yes.

University of Warwick PhD engineering researcher Sam Tucker Harvey, the lead author on the paper, said:

"What's most appealing about this mechanism is that it provides a mechanical means of generating power without the use of bearings, which can cease to work in environments with extreme cold, heat, dust or sand. While the amount of potential power that could be generated is small, it would be more than enough to power autonomous electrical devices, such as those in wireless sensor networks. These networks could be utilised for applications such as providing automated weather sensing in remote and extreme environments."

Dr Petr Denissenko further noted that one future application could be as a backup power supply for future Mars landers and rovers.

"The performance of the Mars rover Opportunity far exceeded its designers' wildest dreams but even its hard working solar panels were probably eventually overcome by a planetary-scale dust storm. If we could equip future rovers with a backup mechanical energy harvester based on this technology, it may further the lives of the next generation of Mars rovers and landers."

The key to Aspen leaves' low wind but large amplitude quiver isn't just the shape the leaf but more importantly relates to the effectively flat shape of the stem.

The University of Warwick researchers used mathematical modelling to come up with a mechanical equivalent of the leaf. They then used a low speed wind tunnel to test a device with a cantilever beam like the flat stem of the Aspen leaf, and a curved blade tip with a circular arc cross section acting like the main leaf.

The blade was then oriented perpendicular to the flow direction, which allows the harvester to produce self-sustained oscillations at uncharacteristically low wind speeds like the aspen leaf. The tests showed that the air flow becomes attached to the rear face of the blade when the blade's velocity becomes high enough, hence acting more similarly to an aerofoil rather than to the bluff bodies which have typically been studied in the context of wind energy harvesting.

In nature, the propensity of a leaf to quiver is also enhanced by the thin stem's tendency to twist in the wind in two different directions. However, the researchers modelling and testing found that they did not need to replicate the additional complexity of a further degree of movement in their mechanical model. Simply replicating the basic properties of the flat stem in as a cantilever beam and curved blade tip with a circular arc cross section acting like the main leaf was enough to create sufficient mechanical movement to harvest power.

The researchers will next examine which mechanical movement based power generating technologies would best be able to exploit this device and how they device could best be deployed in arrays.
-end-
NOTES TO EDITORS

The article can be accessed at: https://aip.scitation.org/doi/10.1063/1.5083103

Published by AIP Publishing

(https://publishing.aip.org/authors/rights-and-permissions

Images available at: https://warwick.ac.uk/services/communications/medialibrary/images/march2019/harvesters_img_20190304_100912_003.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/march2019/samtuckerharvey.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/march2019/pd2_2018_m09_small.jpg

For further information please contact:

Alice Scott
Media Relations Manager - Science
University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

University of Warwick

Related Blade Articles:

Imaging helps to spot fake ancient daggers
Collectors have become increasingly interested in weapons from ancient Asia and the Middle East.
From blue and black dresses to turbine blades -- here's the science of 'fake fake' photographs
A new study reveals the science behind a 'trick of the light' that made high-profile photographs of a major piece of public art appear 'faked' despite the pictures being entirely genuine.
NREL's new perovskite ink opens window for quality cells
Scientists at the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) developed a new perovskite ink with a long processing window that allows the scalable production of perovskite thin films for high-efficiency solar cells.
How to hack a cell
A new study published by Assistant Professor Wilson Wong in Nature Biotechnology outlines a new simplified platform to target and program mammalian cells as genetic circuits, even complex ones, more quickly and efficiently.
Youth handball players get injured by sudden increases in training volume
With extra training sessions in the sports hall and more matches on the program, youth handball players risk getting shoulder injuries.
Extensive heat treatment in Middle Stone Age silcrete tool production in South Africa
Humans living in South Africa in the Middle Stone Age may have used advanced heating techniques to produce silcrete blades, according to a study published Oct.
UBC researchers plumb the secrets of tissue paper
Canada's tissue manufacturers are now much closer to producing the perfect paper, thanks to new UBC research.
New research sheds light on the role of proteins and how synapses work
Loss of synapses and synapse function sit at the heart of a number of diseases, not just neurodegenerative examples such as dementia and Parkinson's disease but also conditions such as diabetes.
Let's roll: Material for polymer solar cells may lend itself to large-area processing
An international team's findings provide important clues for designing polymer solar cells approaching target for power conversion efficiency and optimized for roll-to-roll processing.
Don't freestyle 'swimmer's shoulder' injuries
Elite and competitive swimmers log between 60,000 and 80,000 meters weekly -- swimming the length of an Olympic-sized pool 1,200 times -- which places significant stress on their shoulder joints.

Related Blade Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...