A laser technique proves effective to recover material designed to protect industrial products

March 18, 2019

Fluoropolymers are macromolecules made up of carbon and fluoride which, due to their properties, tend to be used as non-stick and anticorrosive coatings on a wide range of material. Products in the clothing, graphic, chemical and car industries as well as different metal molds and kitchen utensils need fluoropolymers for their coatings and to improve their features regarding sticking and resisting corrosion.

These kinds of coatings tend to be quite effective due to their characteristics. They resist abrasion, they behave stably at high temperatures and their structure is not affected by most chemical agents. Nevertheless, despite their resistance, they wear away with use like any other kind of material. In order to deal with this issue, the alternative to replacing the whole piece, often times a very expensive solution, is removing the coating, taking out any impurities and taking off any parts that are attached, and recoating it.

Here is where the merits of fluoropolymers become a problem. Since they are extremely resistant and chemically inert materials, they adhere to a surface and do not come off easily. To deal with this, the Manufacturing Processes Engineering research group at the University of Cordoba has validated a new method to take off these kinds of coatings using a laser technique.

After doing several tests on the material, the research group characterized different parameters such as toughness, roughness and mechanical properties of the material after being exposed to the laser. The IK4-Tekniker Foundation also participated in this testing.

As researcher Guillermo Guerrero Vaca, one of the authors of the paper, explained to us, the results show that the technique behaves effectively, especially for one kind of fluoropolymer, PTFE, so "we can conclude that it could be an alternative for these kinds of coatings instead of other kinds of methods."

He is referring to the Nd:YAG industrial laser, which is a continuous wave and solid-state laser that possesses yttrium oxide and aluminum doped with neodymium. Though it has several applications, for instance in the field of welding as well as in ophthamological treatments, never before has it been used for these specific kinds of materials.

Despite one of its drawbacks being the costly equipment, as Professor Guerrero Vaca points out, its price has decreased over the last few years. The next step to improve its usefulness would be to make the process automatic, something that could be made possible in the future using robotic heads.
References: Study on the Main Influencing Factors in the Removal Process of Non-Stick Fluoropolymer Coatings Using Nd:YAG Laser. Rodriguez-Alabanda, O; Romero, PE; Soriano, C; Sevilla, L; Guerrero-Vaca, G. Polymers 2019, 11(1), 123; https://doi.org/10.3390/polym11010123

University of Córdoba

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.