Nav: Home

On-chip, electronically tunable frequency comb

March 18, 2019

Lasers play a vital role in everything from modern communications and connectivity to bio-medicine and manufacturing. Many applications, however, require lasers that can emit multiple frequencies - colors of light - simultaneously, each precisely separated like the tooth on a comb.

Optical frequency combs are used for environmental monitoring to detect the presence of molecules, such as toxins; in astronomy for searching for exoplanets; in precision metrology and timing. However, they have remained bulky and expensive, which limited their applications. So, researchers have started to explore how to miniaturize these sources of light and integrate them onto a chip to address a wider range of applications, including telecommunications, microwave synthesis and optical ranging. But so far, on-chip frequency combs have struggled with efficiency, stability and controllability.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Stanford University have developed an integrated, on-chip frequency comb that is efficient, stable and highly controllable with microwaves.

The research is published in Nature.

"In optical communications, if you want to send more information through a small, fiber optic cable, you need to have different colors of light that can be controlled independently," said Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering at SEAS and one of the senior authors of the study. "That means you either need a hundred separate lasers or one frequency comb. We have developed a frequency comb that is an elegant, energy-efficient and integrated way to solve this problem."

Loncar and his team developed the frequency comb using lithium niobite, a material well-known for its electro-optic properties, meaning it can efficiently convert electronic signals into optical signals. Thanks to the strong electro-optical properties of lithium niobite, the team's frequency comb spans the entire telecommunications bandwidth and has dramatically improved tunability.

"Previous on-chip frequency combs gave us only one tuning knob," said co-first author Mian Zhang, now CEO of HyperLight and formerly a postdoctoral research fellow at SEAS. "It's a like a TV where the channel button and the volume button are the same. If you want to change the channel, you end up changing the volume too. Using the electro-optic effect of lithium niobate, we effectively separated these functionalities and now have independent control over them."

This was accomplished using microwave signals, allowing the properties of the comb -- including the bandwidth, the spacing between the teeth, the height of lines and which frequencies are on and off -- to be tuned independently.

"Now, we can control the properties of the comb at will pretty simply with microwaves," said Loncar. "It's another important tool in the optical tool box."

"These compact frequency combs are especially promising as light sources for optical communication in data centers," said Joseph Kahn, Professor of Electrical Engineering at Stanford and the other senior author of the study. "In a data center - literally a warehouse-sized building containing thousands of computers - optical links form a network interconnecting all the computers so they can work together on massive computing tasks. A frequency comb, by providing many different colors of light, can enable many computers to be interconnected and exchange massive amounts of data, satisfying the future needs of data centers and cloud computing.

The Harvard Office of Technology Development has protected the intellectual property relating to this project. The research was also supported by OTD's Physical Sciences & Engineering Accelerator, which provides translational funding for research projects that show potential for significant commercial impact.
-end-
This research was co-authored by Brandon Buscaino, Cheng Wang, Amirhassan Shams-Ansari, Christian Reimer and Rongrong Zhu. It was supported by the National Science Foundation, the Harvard University Office of Technology Development's Physical Sciences and Engineering Accelerator, and Facebook, Inc.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".