Nav: Home

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room temperature, said Sergey Savrasov, professor of physics at UC Davis. Savrasov is a coauthor on the paper published March 18 in Nature Materials.

New materials that conduct electricity are of great interest to physicists and materials scientists, both for basic research and because they could lead to new types of electronic devices.

Savrasov works on theoretical condensed matter physics. With others, he proposed the existence of Weyl semimetals in 2011. The Chinese team were able to fabricate and test small pieces, called nanobelts, of niobium arsenide, confirming the predictions of theory. The nanobelts are so thin they are essentially two-dimensional.

"A Weyl semimetal is not a conductor or an insulator, but something in between," Savrasov said. Niobium arsenide, for example, is a poor conductor in bulk but has a metallic surface that conducts electricity. The surface is topologically protected, meaning that it cannot be changed without destroying the bulk material.

With most materials, surfaces can be chemically altered as they pick up impurities from the environment. These impurities can interfere with conductivity. But topologically protected surfaces reject these impurities.

"In theory we expect Weyl surfaces to be good conductors as they don't tolerate impurities," Savrasov said.

If you think of electrons flowing through material, imagine them bouncing off or scattering from impurities. At the quantum level, a conductive material has a Fermi surface which describes all the quantum energy states that electrons can occupy. This Fermi surface affects conductivity of the material.

The nanobelts tested in these experiments had a limited Fermi surface or Fermi arc, meaning that electrons could only be scattered to a limited range of quantum states.

"The Fermi arc limits the states electrons can bounce back to, therefore they are not scattered," Savrasov said.

Materials that are highly conductive at very small scales could be useful as engineers strive to build smaller and smaller circuits. Less electrical resistance means that less heat is generated as current passes through.
-end-
Coauthors on the paper are Cheng Zhang, Zhuoliang Ni, Jinglei Zhang, Xiang Yuan, Yanwen Liu, Yichao Zou, Zhiming Liao, Yongping Du, Awadhesh Narayan, Hongming Zhang, Tiancheng Gu, Xuesong Zhu, Li Pi, Stefano Sanvito, Xiaodong Han, Jin Zou, and Faxian Xiu. The research institutions represented include Fudan University, Shanghai; Chinese Academy of Sciences, Hefei; Nanjing University of Science and Technology and Nanjing University, Nanjing; Beijing University of Technology; the University of Queensland, Australia; ETH Zurich, Switzerland; and Trinity College Dublin, Ireland. Funding support came from the National Natural Science Foundation of China and other Chinese government agencies; U.S. National Science Foundation; the Australian Research Council; and Science Foundation Ireland.

University of California - Davis

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".