Nav: Home

Google research shows how AI can make ophthalmologists more effective

March 18, 2019

SAN FRANCISCO - March 18, 2019 - As artificial intelligence continues to evolve, diagnosing disease faster and potentially with greater accuracy than physicians, some have suggested that technology may soon replace tasks that physicians currently perform. But a new study from the Google AI research group shows that physicians and algorithms working together are more effective than either alone. It's one of the first studies to examine how AI can improve physicians' diagnostic accuracy. The new research will be published in the April edition of Ophthalmology, the ournal of the American Academy of Ophthalmology.

This study expands on previous work from Google AI showing that its algorithm works roughly as well as human experts in screening patients for a common diabetic eye disease called diabetic retinopathy. For their latest study, the researchers wanted to see if their algorithm could do more than simply diagnose disease. They wanted to create a new computer-assisted system that could "explain" the algorithm's diagnosis. They found that this system not only improved the ophthalmologists' diagnostic accuracy, but it also improved algorithm's accuracy.

More than 29 million Americans have diabetes, and are at risk for diabetic retinopathy, a potentially blinding eye disease. People typically don't notice changes in their vision in the disease's early stages. But as it progresses, diabetic retinopathy usually causes vision loss that in many cases cannot be reversed. That's why it's so important that people with diabetes have yearly screenings.

Unfortunately, the accuracy of screenings can vary significantly. One study found a 49 percent error rate among internists, diabetologists, and medical residents.

Recent advances in AI promise to improve access to diabetic retinopathy screening and to improve its accuracy. But it's less clear how AI will work in the physician's office or other clinical settings. Previous attempts to use computer-assisted diagnosis shows that some screeners rely on the machine too much, which leads to repeating the machine's errors, or under-rely on it and ignore accurate predictions. Researchers at Google AI believe some of these pitfalls may be avoided if the computer can "explain" its predictions.

To test this theory, the researchers developed two types of assistance to help physicians read the algorithm's predictions.
  • Grades: A set of five scores that represent the strength of evidence for the algorithm's prediction.

  • Grades + heatmap: Enhance the grading system with a heatmap that measures the contribution of each pixel in the image to the algorithm's prediction.
Ten ophthalmologists (four general ophthalmologists, one trained outside the US, four retina specialists, and one retina specialist in training) were asked to read each image once under one of three conditions: unassisted, grades only, and grades + heatmap.

Both types of assistance improved physicians' diagnostic accuracy. It also improved their confidence in the diagnosis. But the degree of improvement depended on the physician's level of expertise.

Without assistance, general ophthalmologists are significantly less accurate than the algorithm, while retina specialists are not significantly more accurate than the algorithm. With assistance, general ophthalmologists match but do not exceed the model's accuracy, while retina specialists start to exceed the model's performance.

"What we found is that AI can do more than simply automate eye screening, it can assist physicians in more accurately diagnosing diabetic retinopathy," said lead researcher, Rory Sayres, PhD.. "AI and physicians working together can be more accurate than either alone."

Like medical technologies that preceded it, Sayres said that AI is another tool that will make the knowledge, skill, and judgment of physicians even more central to quality care.

"There's an analogy in driving," Sayres explained. "There are self-driving vehicles, and there are tools to help drivers, like Android Auto. The first is automation, the second is augmentation. The findings of our study indicate that there may be space for augmentation in classifying medical images like retinal fundus images. When the combination of clinician and assistant outperforms either alone, this provides an argument for up-leveling clinicians with intelligent tools."
-end-
About the American Academy of Ophthalmology

The American Academy of Ophthalmology is the world's largest association of eye physicians and surgeons. A global community of 32,000 medical doctors, we protect sight and empower lives by setting the standards for ophthalmic education and advocating for our patients and the public. We innovate to advance our profession and to ensure the delivery of the highest-quality eye care. Our EyeSmart® program provides the public with the most trusted information about eye health. For more information, visit aao.org.

About Ophthalmology

Ophthalmology, the official journal of the American Academy of Ophthalmology, publishes original, peer-reviewed, clinically-applicable research. Topics include the results of clinical trials, new diagnostic and surgical techniques, treatment methods, technology assessments, translational science reviews and editorials. For more information, visit http://www.aaojournal.org.

American Academy of Ophthalmology

Related Algorithm Articles:

Algorithm personalizes which cancer mutations are best targets for immunotherapy
As tumor cells multiply, they often spawn tens of thousands of genetic mutations.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
New algorithm optimizes quantum computing problem-solving
Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.
Machine learning algorithm helps in the search for new drugs
Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.
Researchers create algorithm to predict PEDV outbreaks
Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks.
New algorithm provides a more detailed look at urban heat islands
Urban areas are warmer than the adjacent undeveloped land, a phenomenon known as the urban heat island effect.
More Algorithm News and Algorithm Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.