Nav: Home

'Inflamm-aging' causes loss of bone healing ability in the elderly

March 18, 2019

Increases in chronic inflammation - not the passage of time - is the main reason why injured bones do not heal as well with age. This is the finding of a study in mice and humans published March 18 in the Proceedings of the National Academy of Sciences (PNAS).

The results revolve around the known breakdown, due to wear and tear, of the protein machines and large molecules necessary for the life of human cells, the remnants of which trigger the immune system. First studied in its role in destroying invading microbes, this system also can react to the body's own proteins to cause inflammation, a response that fights infection at the site of injury and transitions into the healing process.

The current study explains how this age-driven increase in immune signals diminishes the ability of stem cells - essential ingredients in bone repair - to multiply. This results in a smaller number of stem cells in the aged skeleton, say the study authors, and compromises their ability to help make new bone after a fracture. The research team also restored skeletal stem cell number and function by treating aging mice with an anti-inflammatory component of aspirin.

"Our results argue that age-associated inflammation - called 'inflamm-aging' - is the culprit in the decline in the number and function of the skeletal stem cells that enable bones to heal," says senior study author Philipp Leucht, MD, assistant professor in the departments of Orthopedic Surgery and Cell Biology at NYU School of Medicine.

Diseases that weaken the skeleton are among the most common impairments in the United States, with one report estimating that more than three of every five injuries are to the musculoskeletal system. While seldom fatal, bone fractures greatly diminish quality of life, say researchers - and more so with advanced age, when some fractures never heal.

It's Not the Years

The current study is based on the observation in human patients that stem cell number in the bone marrow significantly declines with increasing age, and that fractures take longer to heal as the stem cell number drops. The research team then moved to mouse models to explore the related mechanisms.

The researchers found that exposing stem cells from young mice to the blood serum of the older mice made their stem cells four times less likely to divide and multiply, an irreversible state called senescence. Past studies had also shown that senescent stem cells send signals that encourage inflammation in a vicious circle.

Specifically, the team found that exposing stem cells from young mice to blood serum of older mice indirectly activated the key immune-related protein, NFκB. As a known centerpiece of the immune response, NFκB interacts with DNA to turn on several pro-inflammatory genes. Experiments revealed that this protein's signals cause skeletal stem cells to stop multiplying.

Furthermore, treatment over time with sodium salicylate, an ingredient in aspirin, repressed NFκB signals and related aged-induced chronic inflammation, increasing the number and bone-healing contribution of skeletal stem cells. Further experiments revealed that anti-inflammatory treatment changed the action of thousands of genes in the stem cells, restoring them to a genetic profile seen in young skeletal stem cells.

"These results suggest that it is inflammation, not chronological age, that hinders bone healing in the elderly," says first study author Anne Marie Josephson, a graduate student at NYU School of Medicine. She says an obstacle to the translation of the findings into future treatments is that rejuvenating bone stem cells with anti-inflammatory drugs just after a bone fracture would also block the acute inflammation that is necessary for successful bone healing.

This suggests, she says, that a more immediate application may be to use anti-inflammatory drugs to build up stem cell pools, not after bone breaks, but during the weeks before elective orthopedic surgeries like hip or knee replacements. In these cases, anti-inflammatory drugs would be used leading up to a surgery, but then be cut off just before to make way for the acute inflammation necessary to normal healing.

In addition, the genetic results suggest signaling pathways that might be targeted by future drug treatments to lessen age-related, chronic inflammation on stem cells without compromising the type of inflammation that quickly follows bone injury.
-end-
Along with Leucht and Josephson, authors of the study from NYU School of Medicine were Vivian Bradaschia-Correa, Sooyeon Lee, Kevin Leclerc, Karan Patel, Emma Muinos Lopez, Hannah Litwa, Shane Neibart, Manasa Kadiyala, Madeleine Wong, Matthew Mizrahi, Nury Yim, Austin Ramme, and Kenneth Egol.

This work was supported by National Institute on Aging grant 1R01AG056169 and National Institute of Arthritis and Musculoskeletal and Skin grant K08AR069099. Also providing funding for the study were the Orthopaedic Research and Education Foundation (OREF) and the Orthopaedic Trauma Association.

NYU Langone Health / NYU School of Medicine

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.