Nav: Home

New telescope design could capture distant celestial objects with unprecedented detail

March 18, 2020

WASHINGTON -- Researchers have designed a new camera that could allow hypertelescopes to image multiple stars at once. The enhanced telescope design holds the potential to obtain extremely high-resolution images of objects outside our solar system, such as planets, pulsars, globular clusters and distant galaxies.

"A multi-field hypertelescope could, in principle, capture a highly detailed image of a star, possibly also showing its planets and even the details of the planets' surfaces," said Antoine Labeyrie, emeritus professor at the Collège de France and Observatoire de la Cote d'Azur, who pioneered the hypertelescope design. "It could allow planets outside of our solar system to be seen with enough detail that spectroscopy could be used to search for evidence of photosynthetic life."

In The Optical Society's (OSA) journal Optics Letters, Labeyrie and a multi-institutional group of researchers report optical modeling results that verify that their multi-field design can substantially extend the narrow field-of-view coverage of hypertelescopes developed to date.

Making the mirror larger


Large optical telescopes use a concave mirror to focus light from celestial sources. Although larger mirrors can produce more detailed pictures because of their reduced diffractive spreading of the light beam, there is a limit to how large these mirrors can be made. Hypertelescopes are designed to overcome this size limitation by using large arrays of mirrors, which can be spaced widely apart.

Researchers have previously experimented with relatively small prototype hypertelescope designs, and a full-size version is currently under construction in the French Alps. In the new work, researchers used computer models to create a design that would give hypertelescopes a much larger field of view. This design could be implemented on Earth, in a crater of the moon or even on an extremely large scale in space.

Building a hypertelescope in space, for example, would require a large flotilla of small mirrors spaced out to form a very large concave mirror. The large mirror focuses light from a star or other celestial object onto a separate spaceship carrying a camera and other necessary optical components.

"The multi-field design is a rather modest addition to the optical system of a hypertelescope, but should greatly enhance its capabilities," said Labeyrie. "A final version deployed in space could have a diameter tens of times larger than the Earth and could be used to reveal details of extremely small objects such as the Crab pulsar, a neutron star believed to be only 20 kilometers in size."

Expanding the view

Hypertelescopes use what is known as pupil densification to concentrate light collection to form high-resolution images. This process, however, greatly limits the field of view for hypertelescopes, preventing the formation of images of diffuse or large objects such as a globular star cluster, exoplanetary system or galaxy.

The researchers developed a micro-optical system that can be used with the focal camera of the hypertelescope to simultaneously generate separate images of each field of interest. For star clusters, this makes it possible to obtain separate images of each of thousands of stars simultaneously.

The proposed multi-field design can be thought of as an instrument made of multiple independent hypertelescopes, each with a differently tilted optical axis that gives it a unique imaging field. These independent telescopes focus adjacent images onto a single camera sensor.

The researchers used optical simulation software to model different implementations of a multi-field hypertelescope. These all provided accurate results that confirmed the feasibility of multi-field observations.

Incorporating the multi-field addition into hypertelescope prototypes would require developing new components, including adaptive optics components to correct residual optical imperfections in the off-axis design. The researchers are also continuing to develop alignment techniques and control software so that the new camera can be used with the prototype in the Alps. They have also developed a similar design for a moon-based version.
-end-
Paper: Z. Xie, D. Mourard, T. Lepine, T. Houllier, A. Labeyrie, H. Ma, "A hypertelescope with multiplexed fields of view," Opt. Lett., 45, 7, 1878-1811 (2020). DOI: https://doi.org/10.1364/OL.385953.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Miguel Alonso, Institut Fresnel, Ecole Central Marseille and Aix-Marseille Université, France, University of Rochester, USA, Optics Letters is available online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:

mediarelations@osa.org

The Optical Society

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.