Designing diamonds for medical imaging technologies

March 19, 2018

WASHINGTON, D.C., March 19, 2018 -- Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. This brings the new technology one step closer to enhancing biosensing applications, such as magnetic brain imaging. The advantages of this layered, sandwichlike, diamond structure are described in a recent issue of Applied Physics Letters, from AIP Publishing.

Chemical processes are used to create large sheets of diamonds for industrial applications. Artificial diamonds can be grown on various surfaces to increase the hardness and reduce the wear of tools, or to take advantage of diamond's high thermal conductivity as a heat sink for electronics. Scientists can manipulate the properties of artificial diamonds by altering their chemical composition. This chemical manipulation is called doping. These "doped" diamonds are proving to be a cheap alternative material for a range of technologies -- from quantum information to biosensing -- that would otherwise have been prohibitively expensive to develop.

Diamonds designed with nitrogen-vacancy (NV) centers that can detect changes in magnetic fields are a powerful tool for biosensing technologies and used in the medical detection and diagnosis of disease. For instance, magnetoencephalography (MEG) is a neuroimaging technique used to map brain activity and trace pathological abnormalities, such as epileptic tissue.

"MEG is commercially available and used in some hospitals but is very expensive so not many MEGs are used," said Norikazu Mizuochi, an author on the paper. Mizuochi explained that using diamonds with NV centers would reduce the equipment costs of MEG diagnoses.

However, these biosensing technologies require light activation, which induces charge switching in NV centers. Neutral NV centers are not able to accurately detect magnetic fields, so the introduction of switching remains a challenge for diamond utilization. "Only the minus [negative] charge can be used for such sensing applications, therefore stabilizing [NV] centers is important for operation," Mizuochi said.

The researchers had previously doped a simple diamond structure with phosphorus to stabilize the NV centers. Phosphorus doping pushed over 90 percent of NV centers to the negative charge state, enabling magnetic field detection. However, the phosphorus introduced noise to the readout, negating the positive result.

In this study, the team adapted the diamond design to preserve the stabilization of negative NV centers, but removed the phosphorus-induced noise. They used a layered structure, like a sandwich, with phosphorus doped diamond as the bread, and enclosed a 10μm thick NV-center diamond filling. This stabilized 70-80 percent of NV centers in the negative charge state, while reducing the noise previously seen in the system.

"At the moment, we have just demonstrated stabilization, but we expect it to also improve sensitivity," Mizuochi said. His team is currently testing the sensitivity of the new design to changes in magnetic fields, and hoping that this structure could be used for biosensing applications such as MEG.
-end-
The article, "Engineering of Fermi level by nin diamond junction for control of charge states of NV centers," is authored by Takuya Murai, Toshiharu Makino, Hiromitsu Kato, Maki Shimizu, Takuya Murooka, Ernst D. Herbschleb, Yuki Doi, Hiroki Morishita, Masanori Fujiwara, Mutsuko Hatano, Satoshi Yamasaki and Norikazu Mizuochi. The article appeared in Applied Physics Letters March 13, 2018 (DOI: 10.1063/1.5010956) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5010956.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

American Institute of Physics

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.