Nav: Home

Superbugs have colonized the International Space Station -- but there's a silver lining

March 19, 2019

Astronauts leave behind many things when they boldly go. Bacteria, however, stay with them.

Extreme spaceflight conditions can force these bacteria to toughen up, while simultaneously lowering the immune defenses of the stressed, isolated crew. These effects - and the risk of infection - grow with mission duration.

Now researchers have taken another small step towards deep space exploration, by testing a new silver- and ruthenium-based antimicrobial coating aboard the International Space Station (ISS). Published in Frontiers in Microbiology, their study shows that the AGXX® dramatically reduced the number of bacteria on contamination-prone surfaces - and could help protect future astronauts beyond the moon and Mars.

A perfect storm

Microgravity. Cosmic radiation. Psychological stress. Unearthly conditions at the ISS create a perfect storm of weakened immune system and strengthened bacteria, that can put its crew at risk.

"Spaceflight can turn harmless bacteria into potential pathogens," says senior study author Prof. Elisabeth Grohmann of Beuth University of Applied Sciences Berlin. "Just as stress hormones leave astronauts vulnerable to infection, the bacteria they carry become hardier - developing thick protective coatings and resistance to antibiotics - and more vigorous, multiplying and metabolizing faster."

To make matters worse, the genes responsible for these new traits can be readily shared among different species of bacteria, via direct contact or in the 'matrix' of slime they secrete - creating new bad guys, Agent Smith-style.

The silver lining

To address this problem, Grohmann and colleagues tested a new antimicrobial coating, AGXX®, on a contamination-prone surface aboard the ISS: the toilet door.

"AGXX® contains both silver and ruthenium, conditioned by a vitamin derivative, and it kills all kinds of bacteria as well as certain fungi, yeasts and viruses. The effects are similar to bleach - except the coating is self-regenerating so it never gets used up," explains Grohmann.

Silver on its own has been used since prehistory to prevent microbial growth. Today it is found in everything from socks to swimming pools - which is perhaps why resistant bacteria have begun to emerge. AGXX® is one of the latest attempts to reinvigorate this ancient antimicrobial.

A ray of hope

The AGXX® coating proved to be highly effective.

"After 6 months exposure on the ISS, no bacteria were recovered from AGXX®-coated surfaces," Grohmann reports.

Even at 12 and 19 months, a total of just 12 bacteria was recovered - a reduction of 80% compared to bare steel. A regular silver coating tested for comparison had only a slight antimicrobial effect, reducing the number of bacteria by 30% versus steel.

"With prolonged exposure time a few bacteria escaped the antimicrobial action. The antimicrobial test-materials are static surfaces, where dead cells, dust particles and cell debris can accumulate over time and interfere with the direct contact between the antimicrobial surface and the bacteria."

Weathering deep space

"Most importantly, no serious human pathogens were found on any surface. Thus, the infection risk for the ISS crew currently is low," stresses Grohmann.

Nevertheless, all bacterial isolates were able to form immunity-evading slimy coatings, and most were resistant to at least three antibiotics. They were also able to share the genes responsible.

"Immunosuppression, bacterial virulence and therefore infection risk increase with duration of spaceflight. We must continue to develop new approaches to combat bacterial infections if we are to attempt longer missions to Mars and beyond," Grohmann concludes.

"For our part, we are continuing to analyze the antimicrobial performance of AGXX®, most recently aboard the joint IBMP-NASA SIRIUS 18/9 isolation mission."
-end-


Frontiers

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...