Nav: Home

Superbugs have colonized the International Space Station -- but there's a silver lining

March 19, 2019

Astronauts leave behind many things when they boldly go. Bacteria, however, stay with them.

Extreme spaceflight conditions can force these bacteria to toughen up, while simultaneously lowering the immune defenses of the stressed, isolated crew. These effects - and the risk of infection - grow with mission duration.

Now researchers have taken another small step towards deep space exploration, by testing a new silver- and ruthenium-based antimicrobial coating aboard the International Space Station (ISS). Published in Frontiers in Microbiology, their study shows that the AGXX® dramatically reduced the number of bacteria on contamination-prone surfaces - and could help protect future astronauts beyond the moon and Mars.

A perfect storm

Microgravity. Cosmic radiation. Psychological stress. Unearthly conditions at the ISS create a perfect storm of weakened immune system and strengthened bacteria, that can put its crew at risk.

"Spaceflight can turn harmless bacteria into potential pathogens," says senior study author Prof. Elisabeth Grohmann of Beuth University of Applied Sciences Berlin. "Just as stress hormones leave astronauts vulnerable to infection, the bacteria they carry become hardier - developing thick protective coatings and resistance to antibiotics - and more vigorous, multiplying and metabolizing faster."

To make matters worse, the genes responsible for these new traits can be readily shared among different species of bacteria, via direct contact or in the 'matrix' of slime they secrete - creating new bad guys, Agent Smith-style.

The silver lining

To address this problem, Grohmann and colleagues tested a new antimicrobial coating, AGXX®, on a contamination-prone surface aboard the ISS: the toilet door.

"AGXX® contains both silver and ruthenium, conditioned by a vitamin derivative, and it kills all kinds of bacteria as well as certain fungi, yeasts and viruses. The effects are similar to bleach - except the coating is self-regenerating so it never gets used up," explains Grohmann.

Silver on its own has been used since prehistory to prevent microbial growth. Today it is found in everything from socks to swimming pools - which is perhaps why resistant bacteria have begun to emerge. AGXX® is one of the latest attempts to reinvigorate this ancient antimicrobial.

A ray of hope

The AGXX® coating proved to be highly effective.

"After 6 months exposure on the ISS, no bacteria were recovered from AGXX®-coated surfaces," Grohmann reports.

Even at 12 and 19 months, a total of just 12 bacteria was recovered - a reduction of 80% compared to bare steel. A regular silver coating tested for comparison had only a slight antimicrobial effect, reducing the number of bacteria by 30% versus steel.

"With prolonged exposure time a few bacteria escaped the antimicrobial action. The antimicrobial test-materials are static surfaces, where dead cells, dust particles and cell debris can accumulate over time and interfere with the direct contact between the antimicrobial surface and the bacteria."

Weathering deep space

"Most importantly, no serious human pathogens were found on any surface. Thus, the infection risk for the ISS crew currently is low," stresses Grohmann.

Nevertheless, all bacterial isolates were able to form immunity-evading slimy coatings, and most were resistant to at least three antibiotics. They were also able to share the genes responsible.

"Immunosuppression, bacterial virulence and therefore infection risk increase with duration of spaceflight. We must continue to develop new approaches to combat bacterial infections if we are to attempt longer missions to Mars and beyond," Grohmann concludes.

"For our part, we are continuing to analyze the antimicrobial performance of AGXX®, most recently aboard the joint IBMP-NASA SIRIUS 18/9 isolation mission."
-end-


Frontiers

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.