Nav: Home

A new first: Scientists mimic nature's self-affinity using computer simulations

March 19, 2019

For the first time ever, researchers have simulated the process of surface roughness creation: a step forward in understanding the emergence of fractal characteristic of rough surfaces on many scales ranging from atomic to geological scales - and maybe a step forward in earthquake prediction.

The topography of the world looks the same whether you look at it from a hilltop viewpoint or under the eyes of a microscope. A mountain range at geological scale is rather identical to the roughness features of an otherwise solid metal object at nanometer scale. This similarity has first been highlighted in 1983 by mathematician Benoit Mandelbrot.

Since then it has been proven that all fractured surfaces share a similar characteristic, referred to as fractal self-affinity. This unique characteristic is often attributed to the physics of crack propagation through solid materials which - up until now - has proved notoriously difficult to model.

"This is the first time we have been able to reproduce self-affinity of sliding surfaces using computer simulations. Our simulations clearly illustrate how subsurface crack propagation and surface wear generates near-identical roughness across multiple scales, independent of initial roughness state," says Ramin Aghababaei, Assistant Professor at the Department of Engineering, Aarhus University.

The study shows that the development of the self-affine morphology is due to smoothing and re-roughening mechanisms via subsurface crack propagation and third body configuration, and the new findings have been published in Nature Communications.

The numerical technique, which was the stepping stone for this work, was developed by Ramin Aghababaei in collaboration with scientists from École Polytechnique Fédérale de Lausanne (EPFL), Switzerland and Cornell University, USA.

"I started to work on this subject three years ago when I was at the EPFL and worked in the Computational Solid Mechanics Laboratory of Prof. Jean-Francois Molinari. The current study was made possible by the great effort of PhD student, Enrico Milanese, lead author of the paper, who used the developed technique and conducted large scale simulations to track the roughness evolution of surfaces sliding against one another," Assistant Professor Aghababaei explains.

The main goal of the current project was to model the process of roughness creation, but the perspectives of their findings are far reaching. Controlling surface roughness is essential to the performance and durability of virtually all engineering applications. For instance, this is of great interest for manufacturing industries to predict and control the surface finish of machined components according to target tolerances.

"In this study, we investigated the mechanism of roughness creation, and we propose it has to do with subsurface crack propagation and material removal at different scales. A crack never goes straight. It twists and curls like a lightning bolt that curves through the air. And when you zoom in, that same waviness self-replicates on smaller scales. In other words, the crack propagation pathway dictates the self-affine nature of rough surfaces at all scales," Ramin Aghababaei says and couples it to the natural fault roughness at the geological scale.

"Mankind still don't know why earthquakes happen, but we believe it's a matter of microscopic crack propagation at the subsurface of the earth, sending out seismic waves that make the ground shake. And if we can understand the crack initiating mechanism by post-factum analyzing of faults roughness, we hope we can predict something," he adds.

Ramin Aghababaei, who's leading the Surface Mechanics Group at the Department of Engineering, Aarhus University, is currently collaborating with geologists to use this knowledge to understand the microscopic origins of earthquakes.

"I am really proud of this work and a great collaboration with the EPFL team on this project. I believe this new technique opens many new possibilities to explore micromechanics of surface degradation and failure, to lay a theoretical foundation for developing the next generation of wear-resistance materials and coatings, hoping to reduce the material wastage due to wear," he says.

The first study using the numerical technique was previously published in Nature Communications where the group disclosed a material length scale that controls surface material removal mechanisms:

Aarhus University

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...