Nav: Home

Discovery of parasitic arsenic cycle may offer glimpse of life in future, warmer oceans

March 19, 2019

CORVALLIS, Ore. - A newly discovered parasitic cycle, in which ocean bacteria keep phytoplankton on an energy-sapping treadmill of nutrient detoxification, may offer a preview of what further ocean warming will bring.

The research, conducted by Oregon State University scientists in the Sargasso Sea near Bermuda, also may explain how the bacteria, SAR11, came to be so prolific.

Findings were published today in mBio.

In large bodies of water, plankton are the collection of organisms unable to swim against the current.

Phytoplankton refers to the autotrophic, or self-feeding, components of the community - the ones that can produce, often via photosynthesis, organic compounds like fats, proteins and carbohydrates from substances in their environment.

Already, in many of the vast, warm regions of the ocean, phytoplankton must deal with the challenge of discriminating between phosphate, a scarce nutrient essential for cell growth, and arsenate, which is chemically similar but toxic.

"Many phytoplankton, including the most common phytoplankton type in warm oceans, Prochlorococcus, detoxify arsenate by adding methyl groups," explains Kimberly Halsey, a microbiology researcher at Oregon State University and a co-author on the study.

A methyl group is one carbon atom bonded to three hydrogen atoms.

"We found that the most abundant non-photosynthetic plankton in the oceans, SAR11 bacteria, remove the methyl groups, releasing poisonous forms of arsenic back into the water," said Steve Giovannoni, distinguished professor of microbiology at OSU and also a study co-author. "That suggests that the methylation and demethylation of arsenic compounds create a cycle in which the phytoplankton can never get ahead - they're continually transferring energy to the arsenate-resistant SAR11."

The process makes SAR11, in effect, parasites.

"It might help explain why SAR11 are so successful, surpassing all other plankton in their numbers," Giovannoni said.

The Sargasso Sea, the only region on Earth described as a sea that doesn't have any land boundaries, is a subtropical ocean gyre east of Bermuda; a gyre is a large system of circulating currents.

Known for its deep blue color and distinctive, brown Sargassum seaweed, the Sargasso Sea lies between the Gulf Stream and the North Atlantic, Canary and North Atlantic Equatorial currents.

"The Sargasso Sea is sometimes called an ocean desert because there is not enough phosphorous in the water to support large blooms of phytoplankton," Halsey said. "Ocean deserts are expanding as the oceans absorb heat and grow warmer."

The parasitic arsenic cycle is a process that scientists predict will become more widespread as the Earth continues to warm.

"The cycle might help explain why rates of photosynthesis in the ocean are sometimes much higher than we expect," Halsey said. "In other words, SAR11 is making the phytoplankton work much harder. One of the big challenges in oceanography is understanding what causes variability in rates of photosynthesis carried out by phytoplankton."
-end-
The National Science Foundation, Simons Foundation International and NASA supported this research.

Oregon State University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...