Nav: Home

New material will allow abandoning bone marrow transplantation

March 19, 2019

Scientists from the National University of Science and Technology "MISIS" developed nanomaterial, which will be able to rstore the internal structure of bones damaged due to osteoporosis and osteomyelitis. A special bioactive coating of the material helped to increase the rate of division of bone cells by 3 times. In the future, it can allow to abandon bone marrow transplantation and patients will no longer need to wait for suitable donor material. An article about the development was published in Applied Surface Science.

Such diseases as osteoporosis and osteomyelitis cause irreversible degenerative changes in the bone structure. Such diseases require serious complex treatment and surgery and transplantation of the destroyed bone marrow in severe stages. Donor material should have a number of compatibility indicators and even close relationship with the donor cannot guarantee full compatibility.

Research group from the National University of Science and Technology "MISIS" (NUST MISIS), led by Anton Manakhov (Laboratory for Inorganic Nanomaterials) developed material that will allow to restore damaged internal bone structure without bone marrow transplantation.

It is based on nanofibers of polycaprolactone, which is biocompatible self-dissolvable material. Earlier, the same research group has already worked with this material: by adding antibiotics to the nanofibers, scientists have managed to create non-changeable healing bandages.

"If we want the implant to take, not only biocompatibility is needed, but also activation of the natural cell growth on the surface of the material. Polycaprolactone as such is a hydrophobic material, meaning, and cells feel uncomfortable on its surface. They gather on the smooth surface and divide extremely slow", Elizaveta Permyakova, one of the co-authors and researcher at NUST MISIS Laboratory for Inorganic Nanomaterials, explains.

To increase the hydrophilicity of the material, a thin layer of bioactive film consisting of titanium, calcium, phosphorus, carbon, oxygen and nitrogen (TiCaPCON) was deposited on it. The structure of nanofibers identical to the cell surface was preserved. These films, when immersed in a special salt medium, which chemical composition is identical to human blood plasma, are able to form on its surface a special layer of calcium and phosphorus, which in natural conditions forms the main part of the bone. Due to the chemical similarity and the structure of nanofibers, new bone tissue begins to grow rapidly on this layer. Most importantly, polycaprolactone nanofibers dissolve, having fulfilled their functions. Only new "native" tissue remains in the bone.

In the experimental part of the study, the researchers compared the rate of division of osteoblastic bone cells on the surface of the modified and unmodified material. It was found that the modified material TiCaPCON has a high hydrophilicity. In contrast to the unmodified material, the cells on its surface felt clearly more comfortable, and divided three times faster.

According to scientists, such results open up great prospects for further work with modified polycaprolactone nanofibers as an alternative to bone marrow transplantation.
-end-


National University of Science and Technology MISIS

Related Transplantation Articles:

Elderly patients also benefit from kidney transplantation
So far, kidney transplantation has generally not been offered to elderly patients (>75 years) because of the perioperative risks.
New material will allow abandoning bone marrow transplantation
Scientists from the National University of Science and Technology 'MISIS' developed nanomaterial, which will be able to restore the internal structure of bones damaged due to osteoporosis and osteomyelitis.
Fewer medical tests -- timely listing for transplantation
Younger patients would benefit greatly from kidney transplantation. Their expected remaining lifetime may even be doubled by having a transplant.
Uterus transplantation -- ethically just as problematic as altruistic surrogacy
In 2014, the first child to have been gestated in a donated uterus was born.
Advancing transplantation: Hepatitis C-infected organs safe for transplantation when followed by antiviral treatment
Twenty patients at Penn Medicine have been cured of the hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease, according to a study published today in Annals of Internal Medicine.
Transplantation followed by antiviral therapy cured hepatitis C
Twenty patients who received kidneys transplanted from hepatitis C virus (HCV)-infected donors experienced HCV cure, good quality of life, and excellent renal function at one year.
The Journal of Heart and Lung Transplantation: 50 years of heart transplantation progress
This month marks the 50th anniversary of the world's first human heart transplant performed at Groote Schuur Hospital in Cape Town by South African surgeon, Christiaan Barnard.
Older donor lungs should be considered for transplantation
With a scarcity of lungs available for transplantation, the use of lungs from donors older than age 60 has been shown to achieve reasonable outcomes and should be considered as a viable option, according to research published online today in The Annals of Thoracic Surgery.
VA patients face disparities in kidney transplantation
From 2004 to 2016, VA patients had lower rates of transplantation compared with patients with Medicare or private insurance.
Hepatocellular carcinoma: Resection vs. transplantation
Liver transplantation is the gold standard for treating early hepatocellular cancers.
More Transplantation News and Transplantation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.