Nav: Home

Smarter drug release thanks to control over encapsulation

March 19, 2019

Researchers at Eindhoven University of Technology and Utrecht University have discovered the parameters that govern the encapsulation of drugs. This gives more control over the slow and steady release of drugs in patients. Moreover, designing encapsulations for new drugs will now require far less experimentation which makes for faster and cheaper drug development. The researchers believe this work will have a significant impact on the biomedical field and designing future drugs.

Many drugs are hydrophobic--they do not dissolve well in water--which makes drug delivery in patients problematic. One possible solution is to encapsulate the drugs in small packages that are hydrophobic (water-repellent) on the inside and hydrophilic (water-soluble) on the outside. The drugs will accumulate in the inside of these packages and the transportation of the drug throughout the patient's body becomes much easier. The packages often consist of associated surfactants, which are pharma-approved. When dissolved in water, a physiological solution, or blood, these molecules orient their hydrophobic part towards the inside core (with affinity for the insoluble drugs) and their hydrophilic side towards the outside, forming a spherical 'package', called a micelle.

The whereabouts in a micelle

Transporting drugs throughout the body in this way has been possible for decades, but only now researchers understand which factors exactly dictate where the drugs inside the micelle gather. This spatial distribution can dramatically affect the release rate of the drugs inside a patient. Some drugs concentrate at the center of the hydrophobic core of the micelle and release slowly, which is desirable for the drug uptake of a patient. Other drugs gather at the core-shell interface of the micelle and release typically fast. Therefore, controlling the location of the drugs in the micelle encapsulation controls the release rate of the drugs.

Using a dye to track drug

To investigate where insoluble drugs gather, the researchers used Nile Red, a dye molecule that resembles the size and solubility of typical drugs. The dye has a very clever property: not only does it absorb a specific color of light, but also that color depends on its environment. If the dye is dissolved in pure water, it absorbs light of a different color than if is there is also some alcohol dissolved in the water. Changing the water/alcohol ratio is a clever way to simulate a good solvent or a poor solvent for the dye. This is analogous to working with a water soluble drug or an insoluble drug. By measuring the light absorption, the researchers could determine how much dye gathered at the core of the micelle and how much at the core-shell interface.

Experiments combined with computer simulations

To confirm their findings, the researchers did computer simulations to determine the locations of the dissolved drugs and the shape of the block copolymer micelle. The computations reveal the arrangement of the components inside and outside the micelle, enabling to assess the preferred regions of the drug.

From the experiments and computations it was concluded that the preferred region of the drug inside the block copolymer micelles is mostly determined by the concentration and the solubility of the drug molecules in the surrounding medium (water/physiological medium/blood). If the concentration of the drug is below the water solubility of the solvent the drug molecules gather at the core-shell interface of the micelle, while if the concentration is above the solubility they gather in the core.

Fewer trail-and-error experimentation

Today's drug encapsulation research is dominated by trail-and-error experimentation. The results reported in this study enable easier and cheaper development of smart drugs. This will help reduce side effects associated with therapy and facilitate the creation of personalized therapeutic treatments where the release of the drug is adjusted to the individual needs of the patient.
-end-
Article reference

"Controlling the spatial distribution of solubilized compounds within copolymer micelles", Alessandro Ianiro, Álvaro González García, Stefan Wijker, Joseph P. Patterson, A. Catarina C. Esteves, and Remco Tuinier Langmuir Just Accepted Manuscript DOI:10.1021/acs.langmuir.9b00180

Eindhoven University of Technology

Related Drugs Articles:

Using drugs for different diseases than initially intended for
Thousands of drugs have the potential to be effective against other diseases than they were developed for.
Virtual development of real drugs
systemsDock is a new, free on-line resource that makes screening for drugs faster and more accurate.
Migraine drugs underused
New research shows that more migraines could be safely treated with drugs that are known to constrict blood vessels.
Why cancer drugs can't take the pressure
A major reason why cancer drugs fail is that they cannot penetrate the high-pressure environment of solid tumors.
Designing better drugs
A new strategy for engineering protein fusions -- to make specific cell-targeted drugs without side effects -- could enable a safer, more potent class of protein drugs.
Why synthetic drugs are as scary as you think (video)
Synthetic drugs such as 'bath salts,' 'K2' or 'Spice' have made unsettling headlines lately, with reports of violent, erratic behavior and deaths after people have used the substances.
Using old drugs to treat new viruses
A group of drugs already in everyday use to treat psychosis or depression may also be used to defeat deadly and emerging viruses, according to new research led by the University of Leeds.
'Metal' drugs to fight cancer
What is the mechanism of action of metal-based chemotherapy drugs (the most widely used for treating common cancers like testicular or ovarian cancer)?
Using superlatives in the media for cancer drugs
The use of superlatives to describe cancer drugs in news articles as 'breakthrough,' 'revolutionary,' 'miracle' or in other grandiose terms was common even when drugs were not yet approved, had no clinical data or not yet shown overall survival benefits, according to an article published online by JAMA Oncology.
Seeking a better way to design drugs
With a three-year, $346,000 award from the National Institutes of Health, a research team at Worcester Polytechnic Institute.

Related Drugs Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...