Nav: Home

Initial results from Hayabusa2's visit to the Ryugu Asteroid, shaped Like a 'spinning top'

March 19, 2019

A trio of papers in this issue presents the initial results from the Japanese Hayabusa2 mission to the near-Earth carbonaceous asteroid Ryugu. According to the combined results of the studies, which measured the mass, size, shape, density, spin and geological properties of the asteroid, Ryugu is perhaps best described as a porous "pile of rubble." The results will also provide the direct geological context required to understand the samples Hayabusa2 is collecting from the asteroid, which will be brought back to Earth at the end of 2020. Sei-Ichiro Watanabe and colleagues present the first up-close observations of Ryugu's mass, shape and density. According to Watanabe et al., the asteroid's low density suggests it has a highly porous interior and is a "rubble pile" of loosely aggregated rocks, which formed into a spinning-top shape during a period of rapid spin. From their remote sensing of the asteroid, the authors identified potential landing sites for the spacecraft best suited for sample collection that could further inform how Ryugu got its spinning-top shape. In a second study, Kohei Kitazato and colleagues used Hayabusa2's near-infrared spectrometer (NIRS3) to survey the surface composition of Ryugu, discovering that hydrated minerals are ubiquitous across the dark asteroid's surface. Previous telescopic analyses of Ryugu's surface have hinted at the asteroid's carbon-bearing nature, thought to be similar to that of carbonaceous chondrite meteorites collected on Earth. However, a lack of detailed spectral data has made definitive compositional identification difficult. Here, the authors' NIRS3 spectral data are most similar to known thermally-and/or shock-metamorphosized carbonaceous chondrite meteorites. Combining the results from the previous two studies, as well as through observation of the geological features of Ryugu, Seiji Sugita and colleagues - in a third study - attempted to constrain Ryugu's origin. Small asteroids, such as Ryugu, are estimated to have been born from much older parent bodies through catastrophic disruption and reaccumulation of fragments during the Solar System evolution. Among other inferences, Sugita et al. suggest Ryugu likely formed as rubble, ejected by an impact from a larger parent asteroid. They say that the preponderance of materials on Ryugu with little water signature suggests that a dominant part of its original parent body was also "water poor."

American Association for the Advancement of Science

Related Asteroid Articles:

Queen's University scientist warns of asteroid danger
A leading astrophysicist from Queen's University Belfast has warned that an asteroid strike is just a matter of time.
New study ranks hazardous asteroid effects from least to most destructive
If an asteroid struck Earth, which of its effects -- scorching heat, flying debris, towering tsunamis -- would claim the most lives?
Wrong-way asteroid plays 'chicken' with Jupiter
For at least a million years, an asteroid orbiting the 'wrong' way around the sun has been playing a cosmic game of chicken with giant Jupiter and with about 6,000 other asteroids sharing the giant planet's space, says a report published in the latest issue of Nature.
Ceres hosts organic compounds, and they formed on the asteroid, not beyond
Aliphatic organic compounds -- carbon-based building blocks that may have a role in the chemistry that creates life -- have been detected for the first time on Ceres, an asteroid and dwarf planet, a new study reveals.
It's a bird... It's a plane... It's the tiniest asteroid!
A team led by UA astronomer Vishnu Reddy has characterized the smallest known asteroid using Earth-based telescopes.
NASA to map Asteroid Bennu from the ground up
The OSIRIS-REx Laser Altimeter, or OLA will be used to create three-dimensional global topographic maps of Bennu and local maps of candidate sample sites.
NASA to map the surface of an asteroid
NASA's OSIRIS-REx spacecraft will travel to near-Earth asteroid Bennu to sample surface material and return it to Earth for study.
NASA instrument to use X-rays to map an asteroid
NASA's OSIRIS-REx spacecraft will launch September 2016 and travel to the near-Earth asteroid Bennu to harvest a sample of surface material and return it to Earth for study.
New type of meteorite linked to ancient asteroid collision
An ancient space rock discovered in a Swedish quarry is a type of meteorite never before found on Earth, and likely a remnant of a massive asteroid collision 470 million years ago that sent debris raining to Earth.
Scientists reconstruct the history of asteroid collisions
An international study, in which Spain's National Research Council (CSIC) participates, reveals that asteroids have endured a multitude of impact strikes since their formation 4,565 million years ago.

Related Asteroid Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.