Nav: Home

Hayabusa2 probes asteroid for secrets

March 19, 2019

The first data received from the Hayabusa2 spacecraft in orbit of asteroid Ryugu helps space scientists explore conditions in the early solar system. The space probe gathered vast amounts of images and other data which gives researchers clues about Ryugu's history, such as how it may have formed from a larger parent body. These details in turn allow researchers to better estimate quantities and types of materials essential for life that were present as Earth formed.

"The ground shook. My heart pounded. The clock counted. 3... 2... 1... Liftoff!" regaled Professor Seiji Sugita of the University of Tokyo's Department of Earth and Planetary Science. "I've never felt so excited and nervous at the same time, that wasn't just another science experiment on top of that rocket. That was the culmination of my life's work and the hopes and dreams of my entire team."

On Wednesday, 3rd December 2014, an orange and white rocket over 50m tall weighing almost 300 tons launched from Tanegashima Space Center in South West Japan and successfully sent the Hayabusa2 spacecraft hurtling into space. Its carefully calculated trajectory swung Hayabusa2 round the Earth to pick up speed so it could reach its destination in the asteroid belt between Mars and Jupiter. The target was the asteroid Ryugu and Hayabusa2 arrived on schedule on Wednesday 27th June 2018.

Since then the spacecraft has used a wide range of cameras and instruments to collect images and data about Ryugu which it continually sends to researchers back on Earth. It has even made a brief soft landing in preparation for a second where it will collect loose surface material -- regolith -- to return to Earth. We'll have to wait until 2020 before that sample returns, but researchers are far from idle in the meantime.

"Just a few months after we received the first data we have already made some tantalising discoveries," said Sugita. "The primary one being the amount of water, or lack of it, Ryugu seems to possess. It's far dryer than we expected, and given Ryugu is quite young (by asteroid standards) at around 100 million years old, this suggests its parent body was much largely devoid of water too."

According to colleagues of Sugita writing in a companion paper, various instruments on Hayabusa2 including a visible-light camera and a near-infrared spectrometer confirm the lack of water. This fact is important as it's thought all of Earth's water, including that comprising 70% of you, came from local asteroids, distant comets and the nebula or dust cloud that became our sun. The presence of dry asteroids in the asteroid belt would change models used to describe the chemical composition of the early solar system. But why does this matter?

"Life," explained Sugita. "This has implications for finding life. There are uncountably many solar systems out there and the search for life beyond ours needs direction. Our findings can refine models that could help limit which kinds of solar systems the search for life should target."

But there's more to this than water; other compounds crucial to life exist in asteroids and Ryugu has some surprises here too. To understand why, it's important to know that Hayabusa2 is not the only terrestrial robot out there exploring asteroids right now. In 2016 NASA launched OSIRIS-REx which arrived at its target asteroid Bennu on 3rd December 2018, four years to the day from the launch of Hayabusa2.

The two projects are not in competition but actively share information and data which could help one another. Researchers compare their asteroids to learn even more than would be possible if they could only probe one. Although alike in most ways, Bennu and Ryugu differ significantly in some areas. They are both extremely dark, have spinning-top-like shapes and are covered in large boulders, but Ryugu contains far less water. This discrepancy has researchers scratching their heads.

"I hoped the surface of Ryugu had more variety as previous ground-based observations had suggested. But every surface feature and boulder on Ryugu seems to be like every other, showing the same scarcity of water," said Sugita. "However, what felt limiting is now enlightening; Ryugu's homogeneity demonstrates the capacity of our instruments to capture nuanced data. It also serves as a necessary constant to compare subsequent data against. So much of science is about controlling variables and Ryugu does this for us."

As Hayabusa2 continues to explore our little rocky neighbour researchers gradually piece together its history, which is entwined with our own. Sugita and his colleagues believe Ryugu comes from a parent asteroid several tens of kilometers wide, most likely in the asteroid families Polana or Eulalia.

"Thanks to the parallel missions of Hayabusa2 and OSIRIS-REx, we can finally address the question of how these two asteroids came to be," concludes Sugita. "That Bennu and Ryugu may be siblings yet exhibit some strikingly different traits implies there must be many exciting and mysterious astronomical processes we have yet to explore."
-end-
Journal articles

S. Sugita, E. Tatsumi, T. Okada, K. Yoshioka, Y. Cho, H. Miyamoto, R. Hemmi, S. Tachibana, C. Sugimoto, N. Takaki, Y. Suzuki, H. Kamiyoshihara, M. Okada, Y. Oki, Y. Takao, et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science. DOI: 10.1126/science.aaw0422

S. Watanabe, E. Tatsumi, S. Sugita, S. Tachibana, et al. Quest for samples from reshaped rubble-pile asteroid 162173 Ryugu by Hayabusa2. Science. DOI: 10.1126/science.aav8032

O. S. Barnouin, S. Sugita, et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience. DOI: 10.1038/s41561-019-0330-x

K. Kitazato, E. Tatsumi, T. Okada, S. Sugita, K. Yoshioka, Y. Cho, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science. DOI: 10.1126/science.aav7432

This study was supported by KAKENHI from the Japanese Society for Promotion of Science (JSPS) (Grant Nos. JP25120006, 17H01175, JP17H06459, JP17K05639, JP16H04059, JP17KK0097, JP26287108, JP16H04044) and the JSPS Core-to-Core program "International Network of Planetary Sciences."

Related links

Department of Earth and Planetary Science - http://www.eps.s.u-tokyo.ac.jp/index-en.html
Graduate School of Science - https://www.s.u-tokyo.ac.jp/en/

Research Contact

Professor Seiji Sugita
Department of Earth and Planetary Science, Graduate School of Science,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN
Tel: +81-3-5841-4543 / +81-40-1919-1709
Email: sugita@eps.s.u-tokyo.ac.jp

Press Contacts

Ms. Kristina Awatsu
Office of Communication, Graduate School of Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN
Tel: +81-3-5841-8737
E-mail: kouhou.s@gs.mail.u-tokyo.ac.jp

Mr. Rohan Mehra
Division for Strategic Public Relations, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Asteroids Articles:

Queen's University scientist warns of asteroid danger
A leading astrophysicist from Queen's University Belfast has warned that an asteroid strike is just a matter of time.
OSIRIS-REx asteroid search tests instruments, science team
OSIRIS-REx did not discover any Earth-Trojan asteroids during a two-week search, but the spacecraft's cameras operated flawlessly and demonstrated they can image objects two magnitudes dimmer than originally expected.
New data about 2 distant asteroids give a clue to the possible 'Planet Nine'
The dynamical properties of these asteroids, observed spectroscopiccally for the first time using the Gran Telescopio CANARIAS, suggest a possible common origin and give a clue to the existence of a planet beyond Pluto, the so-called 'Planet Nine.'
Objective: To deflect asteroids, thus preventing their collision with Earth
An international project, led by Spain's National Research Council, provides information on the effects a projectile impact would have on an asteroid.
ASU spectrometer to fly on new NASA mission to distant 'Trojan' asteroids
In 2021, NASA will launch a mission to a group of asteroids that accompany the giant planet Jupiter.
NASA selects mission to study Jupiter's Trojan asteroids
NASA has selected a mission that will perform the first reconnaissance of the Trojans, a population of primitive asteroids orbiting in tandem with Jupiter.
It's a bird... It's a plane... It's the tiniest asteroid!
A team led by UA astronomer Vishnu Reddy has characterized the smallest known asteroid using Earth-based telescopes.
Scientists reconstruct the history of asteroid collisions
An international study, in which Spain's National Research Council (CSIC) participates, reveals that asteroids have endured a multitude of impact strikes since their formation 4,565 million years ago.
SwRI's Bottke named Fellow of Meteoritical Society
Dr. William Bottke, a planetary scientist from Southwest Research Institute, was recently named a Fellow of the Meteoritical Society, recognizing his contributions to meteoritics and related endeavors.
SwRI's BORE microgravity payload flies aboard commercial suborbital spaceflight
A Southwest Research Institute (SwRI) experiment designed to assess the surface properties and processes of near-Earth asteroids successfully flew aboard Blue Origin's New Shepard space vehicle April 2.

Related Asteroids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...