Nav: Home

Study finds natural selection favors cheaters

March 19, 2019

Mutualisms, which are interactions between members of different species that benefit both parties, are found everywhere -- from exchanges between pollinators and the plants they pollinate, to symbiotic interactions between us and our beneficial microbes.

Natural selection -- the process whereby organisms better adapted to their environment tend to survive and produce more offspring -- predicts, however, that mutualisms should fall apart. Individuals that gain from the cooperation of others but do not reciprocate (so-called cheaters) should arise and destabilize mutualisms. Yet to date, surprisingly little evidence of such cheating or destabilization exists.

A team of biologists at the University of California, Riverside, has now found strong evidence of this cheating.  Focusing on the interaction between nitrogen-fixing bacteria, or rhizobia, and their legume hosts spanning about 530 miles of California habitat, the researchers found that natural selection in their study populations favors cheating rhizobia.

The study, appearing in Ecology Letters, is the first to uncover cheater strains in natural populations and show how natural selection favors them.

The researchers used a previously published database to quantify the landscape abundance of different rhizobial strains. They focused on naturally occurring populations of rhizobia in the genus Bradyrhizobium and the native annual plants, Acmispon strigosus, that these bacteria inhabit. Within these datasets they found that the fewer benefits the rhizobia provide to their host plants, the more common the rhizobia are.

"Our data show that natural selection favors cheating rhizobia, and support predictions that rhizobia can often subvert plant defenses and evolve to exploit hosts," said Joel Sachs, a professor of biology in the Department of Evolution, Ecology & Organismal Biology, who led the research team.

Sachs explained that beneficial bacteria are increasingly appreciated to be key for human health as well as the productivity of crops and livestock. Little is understood, however, about how much these bacterial services vary in natural systems and the forces that modulate them.

"In crop plants, in particular, agronomists have attempted -- and failed -- for several decades to design crop biofertilizers based on beneficial bacteria," he said. "Similar challenges have been faced in applying bacteria in other host systems -- probiotics, for example, which rarely affect host microbes. Our dataset suggests a potential flaw in these approaches; the bacteria, with their own evolutionary interests, can destabilize these interactions."

In their paper, the researchers show how benefits of bacterial symbionts vary over space and time, and how rapidly these systems can evolve.

"We often view the services of bacteria as fixed, but this is not at all true," Sachs said. "Just as each human varies a great deal in almost any trait we can measure, bacterial populations are even more highly variable. Understanding this variation and its drivers will be key to usefully harnessing these bacteria for our own purposes."

Already, his team is actively working to better understand how beneficial bacteria can be applied to improve plant growth. Preliminary data show that it is crucial to carefully select among bacterial variants to avoid using harmful strains.

"Simply applying beneficial bacteria to a crop is often not going to be sufficient since exploitative strains are expected to be lurking within these populations," Sachs said.
-end-
He was joined in the research by Kelsey A. Gano-Cohen (co-first author), Camille E. Wendlandt (co-first author), Peter J. Stokes, Mia A. Blanton, Kenjiro W. Quides, Avissa Zomorrodian, and Eunice S. Adinata.

The research was supported by a grant to Sachs from the National Science Foundation.

University of California - Riverside

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...