Nav: Home

Starving bacteria can eject their tails to save energy and stay alive

March 19, 2019

When nutrients are dangerously low, a group of bacteria have been found to take the drastic measure of getting rid of their tails.

Some bacteria use tails, or flagella, to swim through liquids - including those in our bodies. However, new research published today in PLOS Biology reveals a surprisingly drastic measure taken by some bacteria when facing starvation: they eject their flagella, leaving themselves paralyzed, but conserving energy so they can stay alive.

The research team, led by Imperial College London in collaboration with researchers from the Francis Crick Institute, the University of Leiden, and Justus-Liebig-Universität Giessen, say this is the first time such curious behaviour has been observed in bacteria.

The serendipitous discovery was made when the team were collecting detailed images of the 'motors' that drive flagella in a group of bacteria that includes various harmful species, including Vibrio cholerae, which causes cholera.

They saw some instances where part of the motor 'housing' was present in the membrane of a bacteria, but not the motor or flagellum itself. This suggested two possibilities: either they had caught an image of the motor-flagellum complex as it was being assembled, or as it was being disassembled.

First author Josie Ferreira, from the Department of Life Sciences at Imperial, said: "Before we started our experiments, we thought we had caught the bacteria in the process of assembling their motor-flagella complexes. To our surprise, we found the opposite: not only had the bacteria ejected their flagella, they had plugged the hole it left behind. This suggested to us it was a deliberate action."

Bacterial use their flagella to get around, even swimming through thick gut mucus as in the case of food-poisoning bacterium Campylobacter jejuni. However, flagella are costly to build and power, and constantly grow throughout the bacteria's life, using up a lot of resources.

The team found that bacteria placed in environments that lacked nutrients ejected their flagella into the growth medium. The discarded flagella were complete, including the adaptor structure that connects flagella to their motors, suggesting that they were ejected whole from their base, and not broken off.

Lead author Dr Morgan Beeby, from the Department of Life Sciences at Imperial, said: "The bacteria's actions appear to be deliberate. It's not like when our fingers or toes drop off from frostbite - it's more a calculated act like mountaineer Aron Ralston cutting off his arm in the film 127 Hours to free himself from under a rock."

Bacteria have been observed swimming more slowly when nutrients are low, but this is the first time they have been observed jettisoning their flagella completely in a bid to save energy.

The team say that determining what mechanism harmful bacteria use to eject their flagella could suggest new targets for drugs that force them to push the eject button.

Dr Beeby also says that although the bacteria have evolved a clear mechanism for ejecting flagella and plugging the gap, the process shows how irrational and messy evolution can be. He said: "Evolution is not neat or tidy: leaving the motor structure behind in the membrane is a kind of 'bacterial clutter' that the bacteria close the door on. While an inelegant solution, their molecular clutter doesn't hurt them."
-end-


Imperial College London

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab