Nav: Home

Mathematicians reveal secret to human sperm's swimming prowess

March 19, 2019

Researchers have discovered what gives human sperm the strength to succeed in the race to fertilise the egg.

The researchers, from the universities of York and Oxford, discovered that a reinforcing outer-layer which coats the tails of human sperm is what gives them the strength to make the powerful rhythmic strokes needed to break through the cervical mucus barrier.

Only around 15 out of the 55 million sperm that embark on the treacherous journey to fertilise the egg are able to make it through the reproductive tract where cervical mucus, which is one hundred times thicker than water, forms part of one of nature's toughest selective challenges.

The findings could lead to better sperm-selection methods in IVF clinics, with the fittest sperm being identified under conditions that mimic nature more closely.

3.5 million people in the UK are affected by fertility issues and couples who opt for IVF spend an average of £20,000.

Dr Hermes Gadêlha, from the Department of Mathematics at the University of York, said: "We still don't fully understand how, but a sperm's ability to swim could be associated with genetic integrity. Cervical mucus forms part of the process in the female body of ensuring only the best swimmers make it to the egg.

"During the sperm selection process, IVF clinics don't currently use a highly viscous liquid to test for the best sperm as until now it was not entirely clear whether this is important. Our study suggests that more clinical tests and research are needed to explore the impact of this element of the natural environment when selecting sperm for IVF treatments."

Sperm tails - or flagella - are incredibly complex and measure just the breadth of a hair in length.

The researchers used virtual sperm model to compare the tails of sperm from humans and other mammals, which fertilise inside the body; with sperm from sea urchins, which fertilize outside the body by releasing their sperm into sea water.

While the tails of sea urchin and human sperm share the same bendy inner core, the study suggests that the tails of sperm in mammals may have evolved a reinforcing outer layer to give them the exact amount of extra strength and stability required to overcome the thick fluid barrier they come up against in internal fertilisation.

The researchers used virtual models to add and remove the features of flagella in the different species so that they could identify their function.

They tested the ability of virtual sea urchin-like sperm to swim through liquid as viscous as cervical mucus and found that their tails quickly buckled under the pressure, rendering them unable to propel themselves forward.

Human sperm on the other hand, thrashed around wildly in a low-viscosity liquid like water, but in thicker liquids they began to swim in a powerful rhythmic wave.

Dr Gadêlha added: "Using virtual sperm we were able to see how mammalian sperm is specially adapted to swim through thicker fluids. We don't know which adaptation came first - the stronger sperm or the cervical mucus, or whether they co-evolved - but nothing in nature is by chance and precisely what is required for species to reproduce has been added due to evolutionary pressure over millions of years."

With no central nervous system to make decisions about how to move and when - what controls sperms movement remains a scientific mystery.

"We know that, just like in our arms and legs, sperm have tiny muscles which allow their tails to bend-- but nobody knows how this is orchestrated inside the tail, at the nanometric scale," said Dr Gadêlha.

"Sperm are an architype of self-organisation - movement seems to be happening automatically, perhaps because of a complex combination of many mechanisms at play."
-end-


University of York

Related Sperm Articles:

New test assesses sperm function
Two new publications in the journal Molecular Reproduction and Development validate the usefulness of a test that determines if sperm can capacitate, a process that allows them to fertilize an egg.
Mystery of how sperm swim revealed in mathematical formula
Researchers have developed a mathematical formula based on the rhythmic movement of a sperm's head and tail, which significantly reduces the complexities of understanding and predicting how sperm make the difficult journey towards fertilizing an egg.
Sperm changes documented years after chemotherapy
A Washington State University researcher has documented epigenetic changes in the sperm of men who underwent chemotherapy in their teens.
Out of gas and low on sperm?
Sperm are constantly replenished in the adult male body. Understanding the workings of stem cells responsible for this replenishment is expected to shed light on why male fertility diminishes with age, and possibly lead to new treatments for infertility.
Fish sperm race for reproductive success
Many organisms compete for access to and acceptance by mates.
What does the sperm whale say?
When a team of researchers began listening in on seven sperm whales in the waters off the Azores, they discovered that the whales' characteristic tapping sounds serve as a form of individual communication.
Smoking may have negative effects on sperm quality
A recent study found that that sperm of men who smoke has a greater extent of DNA damage than that of non-smokers.
How females store sperm
The science of breeding chickens has revealed part of the mystery of how certain female animals are able to store sperm long-term.
Female birds select sperm 'super swimmers'
Sperm with shorter heads and longer tails are better at fertilising eggs, study reveals.
Why fruit fly sperm are giant
The fruit fly Drosophila bifurca is only a few millimeters in size but produces almost six centimeters long sperm.

Related Sperm Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".