New research shows promise to treat female group A streptococcus genital tract infections

March 19, 2020

Philadelphia, March 19, 2020 - Puerperal sepsis, also known as childbed fever, is the leading cause of maternal deaths. In this novel study in The American Journal of Pathology, published by Elsevier, scientists report on the discovery of group A streptococcus (GAS) surface proteins involved in female reproductive tract infections such as puerperal sepsis that may pave the way to developing vaccines and more effective treatments.

GAS is a major pathogen causing more than 700 million human infections a year worldwide and 15 million cases each year in the United States. Although the main site of infection is in the throat, GAS can also colonize the female genital tract and cause severe neonatal infections and diseases in the mother during and after labor such as puerperal sepsis. Both GAS neonatal infections and puerperal sepsis have high morbidity and mortality rates. However, after more than 100 years of study, there is still no licensed GAS vaccine available.

"We are still way behind the curve of understanding the molecular basis of puerperal sepsis," explained lead investigator James M. Musser, MD, PhD, chair of the Department of Pathology and Genomic Medicine at Houston Methodist Hospital and the Fondren Presidential Distinguished Chair at the Houston Methodist Research Institute, Houston, TX, USA. "Our understanding of GAS genes contributing to interaction with the female genital tract is a knowledge desert, in part because of limited relevant animal models. It is therefore an important area for translational research to develop vaccines or treatments."

Investigators developed two new animal models for the study of GAS infection biology and used transposon mutant library screens to identify pathogen genes contributing to colonization of the vaginal tract mucosa and infection in the uterine wall. They identified 69 GAS genes required for colonization of the vaginal mucosa in animal models and 96 genes required for infection of the uterine wall ex vivo. They discovered a common set of 39 genes important for GAS fitness in both environments. Notably, they found that genes encoding surface protein SpyAD, and immunogenic secreted protein Isp2, are crucial for GAS fitness in the female genital tract. These warrant translational research that may lead to developing effective new treatments and vaccines and perhaps novel diagnostics.

"This research takes us a step closer toward resolving a long-standing gender health disparity," noted Dr. Musser. "It is the first time we have been able to address this neglected area of research into puerperal sepsis occurring before, during, and after labor.

"Such studies could make important contributions to our understanding of the molecular basis of puerperal sepsis, a disease that has an unusually rich history in medicine because of the pioneering studies by the physician and scientist Ignaz Semmelweis," he concluded.

The Hungarian physician and scientist Ignaz Semmelweis (1818-1865) discovered that the incidence of puerperal fever could be drastically reduced by the use of hand disinfection in obstetric clinics. Despite publication of results in which hand-washing reduced mortality to below one percent, his ideas were initially rejected. The practice only earned widespread acceptance after his death.


Related Vaccines Articles from Brightsurf:

Comprehensive safety testing of COVID-19 vaccines based on experience with prior vaccines
'The urgent need for COVID-19 vaccines must be balanced with the imperative of ensuring safety and public confidence in vaccines by following the established clinical safety testing protocols throughout vaccine development, including both pre- and post-deployment,' write David M.

Safety of HPV vaccines in males
A new analysis published in the British Journal of Clinical Pharmacology shows that HPV vaccines are safe and well tolerated in the male population, and the side effects that may occur after immunization are similar in both sexes.

Model could improve design of vaccines, immunotherapies
Researchers have discovered a general property for understanding how immune cell receptors sense and respond to microbial signals, which could lead to more effective vaccines for both existing and novel viruses.

Better vaccines are in our blood
Red blood cells don't just shuttle oxygen from our lungs to our organs: they also help the body fight off infections by capturing pathogens in the blood and presenting them to immune cells in the spleen.

Challenges in evaluating SARS-CoV-2 vaccines
With more than 140 SARS-CoV-2 vaccines in development, the race is on for a successful candidate to help prevent COVID-19.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

Misinformation on vaccines readily available online
Parents researching childhood vaccinations online are likely to encounter significant levels of negative information, researchers at the University of Otago, Wellington, have found.

Battle with the cancer: New avenues from childhood vaccines
A new research from the University of Helsinki showed for the first time how the pre-immunization acquired through common childhood vaccines can be used to enhance therapeutic cancer treatment.

Personalized cancer vaccines
The only therapeutic cancer vaccine available on the market has so far showed very limited efficacy in clinical trials.

Doubts raised about effectiveness of HPV vaccines
A new analysis of the clinical trials of HPV vaccines to prevent cervical cancer raises doubts about the vaccines' effectiveness.

Read More: Vaccines News and Vaccines Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to