Nav: Home

'Sushi parasites' have increased 283-fold in past 40 years

March 19, 2020

The next time you eat sashimi, nigiri or other forms of raw fish, consider doing a quick check for worms.

A new study led by the University of Washington finds dramatic increases in the abundance of a worm that can be transmitted to humans who eat raw or undercooked seafood. Its 283-fold increase in abundance since the 1970s could have implications for the health of humans and marine mammals, which both can inadvertently eat the worm.

Thousands of papers have looked at the abundance of this parasitic worm, known as Anisakis or "herring worm," in particular places and at particular times. But this is the first study to combine the results of those papers to investigate how the global abundance of these worms has changed through time. The findings were published March 19 in the journal Global Change Biology.

"This study harnesses the power of many studies together to show a global picture of change over a nearly four-decade period," said corresponding author Chelsea Wood, an assistant professor in the UW School of Aquatic and Fishery Sciences. "It's interesting because it shows how risks to both humans and marine mammals are changing over time. That's important to know from a public health standpoint, and for understanding what's going on with marine mammal populations that aren't thriving."

Despite their name, herring worms can be found in a variety of marine fish and squid species. When people eat live herring worms, the parasite can invade the intestinal wall and cause symptoms that mimic those of food poisoning, such as nausea, vomiting and diarrhea. In most cases, the worm dies after a few days and the symptoms disappear. This disease, called anisakiasis or anisakidosis, is rarely diagnosed because most people assume they merely suffered a bad case of food poisoning, Wood explained.

After the worms hatch in the ocean, they first infect small crustaceans, such as bottom-dwelling shrimp or copepods. When small fish eat the infected crustaceans, the worms then transfer to their bodies, and this continues as larger fish eat smaller infected fish.

Humans and marine mammals become infected when they eat a fish that contains worms. The worms can't reproduce or live for more than a few days in a human's intestine, but they can persist and reproduce in marine mammals.

Seafood processors and sushi chefs are well-practiced at spotting the worms in fish and picking them out before they reach customers in grocery stores, seafood markets or sushi bars, Wood explained. The worms can be up to 2 centimeters in length, or about the size of a U.S. 5-cent nickel.

"At every stage of seafood processing and sushi preparation, people are good at finding worms and removing them from fish," Wood said.

Some worms can make it past these screening steps. Still, Wood -- who studies a range of marine parasites -- said she enjoys eating sushi regularly. For sushi consumers who remain concerned about these worms, she recommends cutting each piece in half and looking for worms before eating it.

For the analysis, the study's authors searched the published literature archived online for all mentions of Anisakis worms, as well as another parasitic worm called Pseudoterranova, or "cod worm." They whittled down the studies based on set criteria, ultimately keeping only those studies that presented estimates of the abundance of each worm in fish at a given point in time. While Anisakis worms increased 283-fold over the study period of 1978 to 2015, Pseudoterranova worms did not change in abundance.

Although the health risks of these marine worms are fairly low for humans, scientists think they may be having a big impact on marine mammals such as dolphins, whales and seals. The worms actually reproduce in the intestines of these animals and are released into the ocean via the marine mammals' feces. While scientists don't yet know the physiological impacts of these parasites on marine mammals, the parasites can live in the mammals' bodies for years, which could have detrimental effects, Wood said.

"One of the important implications of this study is that now we know there is this massive, rising health risk to marine mammals," Wood said. "It's not often considered that parasites might be the reason that some marine mammal populations are failing to bounce back. I hope this study encourages people to look at intestinal parasites as a potential cap on the population growth of endangered and threatened marine mammals."

The authors aren't sure what caused the large increase of Anisakis worms over the past several decades, but climate change, more nutrients from fertilizers and runoff, and an increase in marine mammal populations over the same period could all be potential reasons, they said.

Marine mammals have been protected under the Marine Mammal Protection Act since 1972, which has allowed many populations of seals, sea lions, whales and dolphins to grow. Because the worms reproduce inside marine mammals -- and their rise occurred over the same time period as the mammals' increase -- this is the most plausible hypothesis, Wood said.

"It's possible that the recovery of some marine mammal populations has allowed recovery of their Anisakis parasites." Wood said. "So, the increase in parasitic worms actually could be a good thing, a sign that the ecosystem is doing well. But, ironically, if one marine mammal population increases in response to protection and its Anisakis parasites profit from that increase, it could put other, more vulnearble marine mammal populations at risk of increased infection, and that could make it even more difficult for these endangered populations to recover."
-end-
Other co-authors are Evan Fiorenza, who completed the work as a UW graduate student; Catrin Wendt, a graduate student in the UW School of Aquatic and Fishery Sciences; Katie Dobkowski of Bates College; Teri King of Washington Sea Grant; Marguerite Pappaioanou and Peter Rabinowitz of the UW School of Public Health's Department of Environmental and Occupational Health Sciences; and Jameal Samhouri of NOAA's Northwest Fisheries Science Center.

This study was funded by Washington Sea Grant, the National Science Foundation, the Alfred P. Sloan Foundation and the University of Washington.

For more information, contact Wood at chelwood@uw.edu or +1-831-324-3076.

Photos available for download: https://drive.google.com/drive/folders/1mYokKOGyhQxKntSnogcm_ZFSzLMK-aB7?usp=sharing (If link doesn't work, copy and paste into a browser)

University of Washington

Related Parasites Articles:

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.
New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.
More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.
How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.
Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.
Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.
Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.
Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.
How malaria parasites become resistant to artemisinin antimalarial drugs
Malaria parasite mutations that inhibit the endocytoic appetite for a host's red blood cells may render them resistant to artemisinin, a widely used frontline antimalarial drug, according to a new study, which reveals a key molecular mechanism of drug resistance.
Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.
More Parasites News and Parasites Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.