Nav: Home

Putting artificial intelligence to work in the lab

March 19, 2020

  • Automated Scanning Probe Microscopy (SPM) controlled by artificial intelligence
  • First demonstration of fully autonomous, long-term SPM operation
An Australian-German collaboration has demonstrated fully-autonomous SPM operation, applying artificial intelligence and deep learning to remove the need for constant human supervision.

The new system, dubbed DeepSPM, bridges the gap between nanoscience, automation and artificial intelligence (AI), and firmly establishes the use of machine learning for experimental scientific research.

"Optimising SPM data acquisition can be very tedious. This optimisation process is usually performed by the human experimentalist, and is rarely reported," says FLEET Chief Investigator Dr Agustin Schiffrin (Monash University).

"Our new AI-driven system can operate and acquire optimal SPM data autonomously, for multiple straight days, and without any human supervision."

The advance brings advanced SPM methodologies such as atomically-precise nanofabrication and high-throughput data acquisition closer to a fully automated turnkey application.

The new deep learning approach can be generalised to other SPM techniques. The researchers have made the entire framework publicly available online as open source, creating an important resource for the nanoscience research community.

FULLY-AUTONOMOUS DeepSPM

"Crucial to the success of DeepSPM is the use of a self-learning agent, as the correct control inputs are not known beforehand," says Dr Cornelius Krull, project co-leader.

"Learning from experience, our agent adapts to changing experimental conditions and finds a strategy to maintain the system stable," says Dr Krull, who works with Dr Shiffrin at Monash School of Physics and Astronomy.

The AI-driven system begins with an algorithmic search of the best sample regions and proceeds with autonomous data acquisition.

It then uses a convolutional neural network to assess the quality of the data. If the quality of the data is not good, DeepSPM uses a deep reinforcement learning agent to improve the condition of the probe.

DeepSPM can run for several days, acquiring and processing data continuously, while managing SPM parameters in response to varying experimental conditions, without any supervision.

The study demonstrates fully autonomous, long-term SPM operation for the first time by combining:
  • an algorithmic approach for sample area selection and SPM data acquisition;
  • supervised machine learning using convolutional neural networks for quality assessment and classification of SPM data, and
  • deep reinforcement learning for dynamic automated in-situ probe management and conditioning.
-end-
THE STUDY

Artificial-intelligence-driven scanning probe microscopy was published in Communications Physics in March 2020.

Researchers at Monash University's School of Physics and Astronomy worked closely with collaborators at the Max Planck Institute of Molecular Cell Biology and Genetics (Dresden), Max Delbrück Center for Molecular Medicine (Berlin) and Heidelberg University.

All experiments were performed at Monash, partly funded by the Australian Research Council. Computations were performed at the Center for Information Services and High Performance Computing (European Research Council funded).

SPMs and FLEET

Dr Schiffrin's group at FLEET uses SPM to investigate the atomic-scale properties - structural and electronic - of new nanomaterials with potential use in future low-energy electronic technologies.

FLEET is an Australian Research Council-funded research centre bringing together over a hundred Australian and international experts to develop a new generation of ultra-low energy electronics.

ARC Centre of Excellence in Future Low-Energy Electronics Technologies

Related Learning Articles:

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.
How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.
School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.
Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.
Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.
Sleep readies synapses for learning
Synapses in the hippocampus are larger and stronger after sleep deprivation, according to new research in mice published in JNeurosci.
Learning from experience is all in the timing
Animals learn the hard way which sights, sounds, and smells are relevant to survival.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
More Learning News and Learning Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.