Nav: Home

New contrast agent for early diagnosis of brain metastases

March 19, 2020

A group of researchers led by Leif Schroeder from the Leibniz-Forschungsinstitut fuer Molekulare Pharmakologie (FMP) have found a way to detect metastases in certain types of cancer in the brain at an early stage, using only minimal amounts of contrast agent. To this end, the team uses a synthetic molecule that helps to detect the formation of new blood vessels, producing much more sophisticated imaging than is possible with conventional methods of diagnosis. The results have now been published in Advanced Biosystems.

Some types of cancer - including breast cancer - may induce the formation of brain metastases. Increased development of new small blood vessels (capillaries) is an early sign of abnormal tissue changes. Conventional contrast agents used in magnetic resonance imaging (MRI) for examining the brain are not suitable for the direct and early detection of newly forming cells. "For this, we need a contrast agent that considerably increases the sensitivity of MRI by greatly improving the contrast structure, and that is only needed in tiny amounts," explained FMP researcher Dr. Leif Schroeder.

His group has been working for a long time to develop new contrast agents that detect artificially magnetized xenon in tissue and that cause signals even in small quantities. In his efforts to create a contrast agent especially suited for use in vascular cells of the so-called blood-brain barrier, the physicist was able to draw on preliminary work undertaken by his FMP colleague Dr. Margitta Dathe, who had developed a similar structure for drug transport to these cells in inner vascular walls of the brain. This peptide structure forms so-called micelles, aggregates of around 19 molecules that cluster spontaneously.

To utilize micelles for diagnostic purposes, Schroeder and his team had them modified: "We inserted molecular cages - synthetic molecules shaped like a hollow soccer ball - that we can temporarily fill with xenon. We were therefore able to 'switch on' 19 xenon loads per micelle for the image contrast, enabling us to directly visualize this type of tumor-forming cells," reported Leif Schroeder.

First, he and his team tested whether the modified version of the structure developed by Margitta Dathe would still form micelles. "Fortunately, the molecules behaved in the same way, despite the insertion of cages, and formed micelles composed of 19 units each," the researcher remarked. The micelles were then supposed to interact with large amounts of xenon.

Having a high local density of cages is a prerequisite for visualizing blood vessel cells in MRI. In a further step, the researchers tested whether xenon could enter the cages inside the molecules - this also proved successful. Schroeder then investigated how micelles equipped with xenon behave in two cell cultures, one of which comprised cerebral cells. In this case, the micelles docked onto blood vessel cells and labeled them - the newly developed contrast agent worked. To check their findings, Leif Schroeder also tested the micelles in aortic cells. Since this type of cell is structured differently, however, there was much less binding of micelles in this case.

The advantage of the new method is that the spread of malignant tumors to the brain can be detected early, before the onset of widespread metastasis. This is because, when metastasis occurs, brain areas exhibit increased formation of blood vessels, which are needed to supply nutrients to tumor tissue. In the case of breast cancer, this type of metastasis is often associated with a poor prognosis. Blood vessels absorb the micelles developed by Schroeder's and Dathe's team, and xenon enables the process of new vessel formation to be visualized directly - at an early stage. Conventional methods for labeling certain cells for MRI are much less sensitive. A comparison showed that alternatives involving fluorine contrast agents are around 16,000 times less efficient.

"The new contrast agent could be used for the safe and minimally invasive detection of early-stage cerebral metastases. This could have significant advantages, particularly in the diagnosis of breast cancer, because dangerous tumors can be detected much earlier, improving therapy outcomes," summarized Leif Schroeder. In the future, Schroeder and his group intend to utilize xenon-based contrast agents for other medical applications.
-end-


Forschungsverbund Berlin

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.