Nature-inspired green energy technology clears important development hurdle

March 19, 2020

Scientist Heinz Frei has spent decades working toward building an artificial version of one of nature's most elegant and effective machines: the leaf.

Frei, and many other researchers around the world, seek to use photosynthesis - the sunlight-driven chemical reaction that green plants and algae use to convert carbon dioxide (CO2) into cellular fuel - to generate the kinds of fuel that can power our homes and vehicles. If the necessary technology could be refined past theoretical models and lab-scale prototypes, this moonshot idea, known as artificial photosynthesis, has the potential to generate large sources of completely renewable energy using the surplus CO2 in our atmosphere.

With their latest advance, Frei and his team at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) are now closing in on this goal. The scientists have developed an artificial photosynthesis system, made of nanosized tubes, that appears capable of performing all the key steps of the fuel-generating reaction.

Their latest paper, published in Advanced Functional Materials, demonstrates that their design allows for the rapid flow of protons from the interior space of the tube, where they are generated from splitting water molecules, to the outside, where they combine with CO2 and electrons to form the fuel. That fuel is currently carbon monoxide, but the team is working toward making methanol. Fast proton flow, which is essential for efficiently harnessing sunlight energy to form a fuel, has been a thorn in the side of past artificial photosynthesis systems.

Now that the team has showcased how the tubes can perform all the photosynthetic tasks individually, they are ready to begin testing the complete system. The individual unit of the system will be small square "solar fuel tiles" (several inches on a side) containing billions of the nanoscale tubes sandwiched between a floor and ceiling of thin, slightly flexible silicate, with the tube openings piercing through these covers. Frei is hopeful that his group's tiles could be the first to address the major hurdles still facing this type of technology.

"There are two challenges that have not yet been met," said Frei, who is a senior scientist in Berkeley Lab's Biosciences Area. "One of them is scalability. If we want to keep fossil fuels in the ground, we need to be able to make energy in terawatts - an enormous amount of fuel. And, you need to make a liquid hydrocarbon fuel so that we can actually use it with the trillions of dollars' worth of existing infrastructure and technology."

He noted that once a model meeting these requirements is made, building a solar fuel farm out of many individual tiles could proceed quickly. "We, as basic scientists, need to deliver a tile that works, with all questions about its performance settled. And engineers in industry know how to connect these tiles. When we've figured out square inches, they'll be able to make square miles."

How it works

Each tiny (about 0.5 micrometer wide), hollow tube inside the tile is made of three layers: an inner layer of cobalt oxide, a middle layer of silica, and an outer layer of titanium dioxide. In the inner layer of the tube, energy from sunlight delivered to the cobalt oxide splits water (in the form of moist air that flows through the inside of each tube), producing free protons and oxygen.

"These protons easily flow through to the outer layer, where they combine with carbon dioxide to form carbon monoxide now - and methanol in a future step - in a process enabled by a catalyst supported by the titanium dioxide layer," said Won Jun Jo, a postdoctoral fellow and first author of the paper. "The fuel gathers in the space between tubes, and can be easily drained out for collection."

Importantly, the middle layer of the tube wall keeps the oxygen produced from water oxidation in the interior of the tube, and blocks the carbon dioxide and the evolving fuel molecules on the outside from permeating into the interior, thereby separating the two very incompatible chemical reaction zones.

This design mimics actual living photosynthetic cells, which separate oxidation and reduction reactions with organic membrane compartments inside the chloroplast. Similarly in line with nature's original blueprint, the team's membrane tubes allow the photosynthetic reaction to occur over a very short distance, minimizing the energy loss that occurs as ions travel and preventing unintended chemical reactions that would also lower the system's efficiency.

"This work is part of Berkeley Lab's commitment to contribute solutions to the urgent energy challenges posed by climate change," said Frei. "The interdisciplinary nature of the task requires the breadth of expertise and major facilities unique to Berkeley Lab. In particular, the nanofabrication and imaging capabilities of the Molecular Foundry are essential for synthesizing and characterizing the ultrathin layers and making square-inch-sized arrays of hollow nanotubes."
Funding to support this work was provided by the Energy & Biosciences Institute through the EBI-Shell program. Portions of this work were performed at the Berkeley Lab's Molecular Foundry, a DOE Office of Science user facility.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Lawrence Berkeley National Laboratory

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to