BU astrophysicist and collaborators reveal a new model of our heliosphere

March 19, 2020

The heliosphere, despite its name, is not actually a sphere. Space physicists have long compared its shape to a comet, with a round "nose" on one side and a long tail extending in the opposite direction.

In 2015, using a new computer model and data from the Voyager 1 spacecraft, Merav Opher, professor of astronomy and researcher at Boston University's Center for Space Physics, and her coauthor James Drake of the University of Maryland came to a different conclusion: they proposed that the heliosphere is actually shaped like a crescent--not unlike a freshly baked croissant, in fact. In this "croissant" model, two jets extend downstream from the nose rather than a single fade-away tail. "That started the conversation about the global structure of the heliosphere," says Opher.

Then, two years after the "croissant" debate began, readings from the Cassini spacecraft, which orbited Saturn from 2004 until 2017, suggested yet another vision of the heliosphere. By timing particles echoing off the boundary of the heliosphere and correlating them with ions measured by the twin Voyager spacecraft, Cassini scientists concluded that the heliosphere is actually very nearly round and symmetrical: neither a comet nor a croissant, but more like a beach ball. Their result was just as controversial as the croissant. "You don't accept that kind of change easily," says Tom Krimigis, who led experiments on both Cassini and Voyager. "The whole scientific community that works in this area had assumed for over 55 years that the heliosphere had a comet tail."

Now, Opher, Drake, and colleagues Avi Loeb of Harvard University and Gabor Toth of the University of Michigan have devised a new three-dimensional model of the heliosphere that could reconcile the "croissant" with the beach ball. Their work was published in Nature Astronomy.

Unlike most previous models, which assumed that charged particles within the solar system all hover around the same average temperature, the new model breaks the particles down into two groups. First are charged particles coming directly from the solar wind. Second are what space physicists call "pickup" ions. These are particles that drifted into the solar system in an electrically neutral form--because they aren't deflected by magnetic fields, neutral particles can "just walk right in," says Opher--but then had their electrons knocked off.

The New Horizons spacecraft, which is now exploring space beyond Pluto, has revealed that these particles become hundreds or thousands of times hotter than ordinary solar wind ions as they are carried along by the solar wind and sped up by its electric field. But it was only by modeling the temperature, density and speed of the two groups of particles separately that the researchers discovered their outsized influence on the shape of the heliosphere.

That shape, according to the new model, actually splits the difference between a croissant and a sphere. While the new model looks very different from the classic comet model, the two may actually be more similar than they appear, says Opher, depending on exactly how you define the edge of the heliosphere. Think of transforming a grayscale photo to black and white: The final image depends a lot on exactly which shade of gray you pick as the dividing line between black and white.

So why worry about the shape of the heliosphere, anyway? Researchers studying exoplanets--planets around other stars--are keenly interested in comparing our heliosphere with those around other stars. Could the solar wind and the heliosphere be key ingredients in the recipe for life? "If we want to understand our environment we'd better understand all the way through this heliosphere," says Loeb, Opher's collaborator from Harvard.

And then there's the matter of those DNA-shredding interstellar particles. Researchers are still working on what, exactly, they mean for life on Earth and on other planets. Some think that they actually could have helped drive the genetic mutations that led to life like us, says Loeb. "At the right amount, they introduce changes, mutations that allow an organism to evolve and become more complex," he says. But the dose makes the poison, as the saying goes. "There is always a delicate balance when dealing with life as we know it. Too much of a good thing is a bad thing," says Loeb.

When it comes to data, though, there's rarely too much of a good thing. And while the models seem to be converging, they are still limited by a dearth of data from the solar system's outer reaches. That is why researchers like Opher are hoping to stir NASA to launch a next-generation interstellar probe that will cut a path through the heliosphere and directly detect pickup ions near the heliosphere's periphery. So far, only the Voyager 1 and Voyager 2 spacecrafts have passed that boundary, and they launched more than 40 years ago, carrying instruments of an older era that were designed to do a different job. Mission advocates based at Johns Hopkins University Applied Physics Laboratory say that a new probe could launch some time in the 2030s and start exploring the edge of the heliosphere 10 or 15 years after that.

"With the Interstellar Probe we hope to solve at least some of the innumerous mysteries that Voyagers started uncovering," says Opher. And that, she thinks, is worth the wait.

Boston University

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.