Nav: Home

Nahum Arav part of team to discover quasar tsunamis

March 19, 2020

Using the unique capabilities of NASA's Hubble Space Telescope, a team of astronomers led by Virginia Tech's Nahum Arav has discovered the most energetic outflows ever witnessed in the universe.

The outflows emanate from quasars and tear across interstellar space similar to tsunamis on Earth, wreaking havoc on the galaxies in which the quasars reside. Quasars are the brilliant, compact cores of distant galaxies that can shine 1,000 times brighter than their host galaxies of hundreds of millions of stars. Their central engines are supermassive black holes that are engorged with infalling dust, gas, and stars, said Arav, a professor in the Department of Physics, part of the Virginia Tech College of Science.

Quasars are created when a black hole devours matter, thus emitting intense radiation. Driven by the blistering radiation pressure from the black hole, concussive blasts push material away from the galaxy's center into outflows that accelerate to breathtaking velocities that are a few percent of the speed of light, Arav said.

"These outflows are crucial for the understanding of galaxies' formation," Arav said. "They are pushing hundreds of solar masses of material each year. The amount of mechanical energy that these outflows carry is up to several hundreds of times higher than the luminosity of the entire Milky Way galaxy."

The findings appear in the Astrophysical Journal Supplements. Arav's research team includes post-doctorate researcher Timothy Miller and doctoral student Xinfeng Xu, both from Virginia Tech, as well as Gerard Kriss and Rachel Plesha of the Space Telescope Science Institute in Baltimore, Maryland.

The quasar winds disseminate across the galaxy's disc, violently sweeping material that otherwise would have formed new stars. Radiation pushes the gas and dust for far greater distances than scientists previously thought, creating a galaxy-wide event, according to the study.

As this cosmic tsunami slams into interstellar material, its temperature spikes to billions of degrees, where material glows largely in X-rays, but also widely across the light spectrum. Anyone witnessing this event would see a fantastic show of fireworks. "You'll get lots of radiation first in X-rays and gamma rays, and afterwards it will percolate to visible and infrared light," Arav said. "You'd get a huge light show, like Christmas trees all over the galaxy."

Numerical simulation of galaxy evolution suggest that such outflows can explain some important cosmological puzzles, such as why astronomers observe so few large galaxies in the universe and why there is a relationship between the mass of the galaxy and the mass of its central black hole. This study show that such powerful quasar outflows should be prevalent in the early universe.

"Both theoreticians and observers have known for decades that there is some physical process that shuts off star formation in massive galaxies, but the nature of that process has been a mystery. Putting the observed outflows into our simulations solves these outstanding problems in galactic evolution," said Jeremiah P. Ostriker, an eminent cosmologist at Columbia and Princeton universities. (Ostriker was not involved with this study.)

Aside from measuring the most energetic quasars ever observed, the team also discovered another outflow accelerating faster than any other. The outflow increased from nearly 43 million miles per hour to roughly 46 million miles per hour in a three-year period. The scientists believe its acceleration will continue to increase as time passes.

"There were so many discoveries in the data that I felt like a kid in a candy store," Miller added.

Astronomers were able to clock the breakneck speed of gas being accelerated by the quasar wind by looking at spectral "fingerprints" of light from the glowing gas. The Hubble ultraviolet data shows that these absorption features were shifted in the spectrum because of the fast motion of the gas across space. This is due to the Doppler effect, where the motion of an object compresses or stretches wavelengths of light depending on whether it is approaching or receding from us. Only Hubble has the ultraviolet sensitivity to obtain the necessary observations leading to this discovery, according to NASA.
-end-
Written by Ann Jenkins and Ray Villard of the Space Telescope Science Institute, with additional reporting by Steven Mackay of the Virginia Tech College of Science.

Virginia Tech

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.