Butterflies lose body fat during metamorphosis

March 20, 2006

A group of scientists from Oregon have discovered that butterflies experience a great loss in body fat during metamorphosis. The details of their findings appear in the March issue of the Journal of Lipid Research, an American Society for Biochemistry and Molecular Biology journal.

"The transformation of a caterpillar to a butterfly is one on nature's great mysteries," says William E. Connor of the Oregon Health and Science University in Portland. "Powerful chemical mediators are necessary to produce this transformation. We hypothesized that considerable energy would be necessary for metamorphosis to occur. It appears as though the larva is sleeping, and one might think that very little energy would be required in hibernation, but the reverse must be true since a great deal of metabolic activity is occurring in the butterfly chrysalis."

Because of this energy expenditure, Connor and his colleagues surmised that butterflies experience a great loss in body fat during metamorphosis. Using the Blue Morpho butterfly from the Butterfly Farm in Belize, the scientists analyzed the fatty acid composition and content of the butterflies, their diet, and their larva. They were able to do this easily because the larva feed solely on the leaves of the rain forest tree Pterocarpus, on which the butterfly lays its eggs.

On a daily basis, they measured the food consumption of the larva and then analyzed the fatty acid composition and content of the diet as well as the larva. Once the larva had transformed into butterflies, the researchers examined the fatty acid composition and content of the butterfly.

They found that both the diet and the tissues of the larva and butterfly had a high concentration of polyunsaturated fatty acids. However, the larva had a much higher total fatty acid content than the butterfly, indicating that the transformation from larva to butterfly drastically reduced the total fatty acid content.

"We were particularly impressed with how the caterpillar concentrated these polyunsaturated fatty acids and then transferred them to the butterfly," says Connor. "The polyunsaturated fatty acids can act as precursor substances for prostaglandin and other ferments that may be very necessary in the health of both the larva and the butterfly and, in particular, the transformation during metamorphosis. The mantra is that every organism has a specific dietary pattern which is important for its maturation and survival. Human beings are much in the same category."

Hoping to build on these initial findings, Connor and his colleagues are planning on looking at the Monarch butterfly next. Monarch larva feed exclusively on milkweed, and Connor has already started growing milkweed and analyzing it for this purpose. "It has very high polyunsaturated fatty acid composition, much like the leaves in Belize which the Blue Morpho caterpillar feeds on," explains Connor.
-end-
The American Society for Biochemistry and Molecular Biology (ASBMB) is a nonprofit scientific and educational organization with over 11,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions, and industry.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's primary purpose is to advance the sciences of biochemistry and molecular biology through its publications, the Journal of Biological Chemistry, the Journal of Lipid Research, Molecular and Cellular Proteomics, and Biochemistry and Molecular Biology Education, and the holding of scientific meetings.

For more information about ASBMB, see the Society's website at www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Butterflies Articles from Brightsurf:

Two centuries of Monarch butterflies show evolution of wing length
North America's beloved Monarch butterflies are known for their annual, multi-generation migrations in which individual insects can fly for thousands of miles.

Vagabonding female butterflies weigh in on reproductive strategies
A new study by researchers from the National Centre for Biological Sciences (NCBS), Bengaluru, published today in the Royal Society's journal Biology Letters, shows that dispersals, when undertaken by butterflies in search of unpredictable resources, selectively burden the egg-carrying females on their long flights.

Migration and dispersal of butterflies have contrasting effect on flight morphology
Migration and dispersal are vastly different activities with very different benefits and risks.

Scientists unravel the evolution and relationships for all European butterflies in a first
For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent.

Human handling stresses young monarch butterflies
People handle monarch butterflies. A lot. Every year thousands of monarch butterflies are caught, tagged and released during their fall migration by citizen scientists helping to track their movements.

What do soap bubbles and butterflies have in common?
A unique butterfly breeding experiment gave UC Berkeley researchers an opportunity to study the physical and genetic changes underlying the evolution of structural color, responsible for butterflies' iridescent purples, blues and greens.

Bacteria get free lunch with butterflies and dragonflies
Recent work from Deepa Agashe's group at NCBS has found that unlike other insects, neither butterflies nor dragonflies seem to have evolved strong mutualisms with their bacterial guests.

How some butterflies developed the ability to change their eyespot size
New insight on how a butterfly species developed the ability to adjust its wing eyespot size in response to temperature has been published today in eLife.

Butterflies can acquire new scent preferences and pass these on to their offspring
Two studies from the National University of Singapore demonstrate that insects can learn from their previous experiences and adjust their future behaviour for survival and reproduction.

Beating the heat in the living wings of butterflies
Columbia engineers and Harvard biologists discover that butterflies have specialized behaviors and wing scales to protect the living parts of their wings.

Read More: Butterflies News and Butterflies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.