New 'liquid lens' data for immersion lithography

March 20, 2006

New data on the properties of potential "liquid lenses" compiled by the National Institute of Standards and Technology (NIST) could help the semiconductor industry continue to shrink feature sizes on computer chips.

In a paper published in the March 10, 2006 issue of Applied Optics,* NIST researchers present newly measured values for key properties of organic solvents and inorganic solutions that might be useful in immersion lithography. Little more than an idea three years ago, immersion lithography is already being commercialized, thanks in part to previously published NIST data. The technique uses liquids to sharpen the focus of patterns used in "printing" semiconductor circuits, much like the eye uses a liquid center to help form images on the retina. Prototype commercial systems use water between the last lens element and the circuit's silicon wafer base, to focus 193-nanometer wavelengths of light down to circuit feature sizes of perhaps 45 nanometers.

The liquids used for immersion lithography must have a high refractive index--the higher the better--which affects how light bends as it crosses interfaces. NIST previously published data on the refractive index of water, which is almost 50 percent higher than that of air. "When we started this work two years ago, you couldn't even find adequate data on water," says Simon Kaplan, lead author of the new paper.

Several companies have proposed proprietary high-index immersion liquids. The NIST work, by contrast, is a fully public report of the key optical properties of a range of fluids. The survey indicates useful trends, such as the fact that refractive index increases with molecular size, and includes data on the effect of temperature on the refractive index, which is crucial in maintaining a sharp focus during the printing process. The data may help other researchers identify useful liquids or calibrate their own measurements.
-end-
The work was funded in part by International SEMATECH.

* S.G. Kaplan and J.H. Burnett. 2006. Optical properties of fluids for 248 nm and 193 nm immersion photolithography. Applied Optics. Posted online March 10.

National Institute of Standards and Technology (NIST)

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.